首页 > 其他分享 >深度Q网络:DQN项目实战CartPole-v0

深度Q网络:DQN项目实战CartPole-v0

时间:2023-06-25 11:26:23浏览次数:46  
标签:CartPole cfg self batch v0 state env action DQN

摘要:相比于Q learning,DQN本质上是为了适应更为复杂的环境,并且经过不断的改良迭代,到了Nature DQN(即Volodymyr Mnih发表的Nature论文)这里才算是基本完善。

本文分享自华为云社区《强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0》,作者: 汀丶 。

1、定义算法

相比于Q learning,DQN本质上是为了适应更为复杂的环境,并且经过不断的改良迭代,到了Nature DQN(即Volodymyr Mnih发表的Nature论文)这里才算是基本完善。DQN主要改动的点有三个:

  • 使用深度神经网络替代原来的Q表:这个很容易理解原因
  • 使用了经验回放(Replay Buffer):这个好处有很多,一个是使用一堆历史数据去训练,比之前用一次就扔掉好多了,大大提高样本效率,另外一个是面试常提到的,减少样本之间的相关性,原则上获取经验跟学习阶段是分开的,原来时序的训练数据有可能是不稳定的,打乱之后再学习有助于提高训练的稳定性,跟深度学习中划分训练测试集时打乱样本是一个道理。
  • 使用了两个网络:即策略网络和目标网络,每隔若干步才把每步更新的策略网络参数复制给目标网络,这样做也是为了训练的稳定,避免Q值的估计发散。想象一下,如果当前有个transition(这个Q learning中提过的,一定要记住!!!)样本导致对Q值进行了较差的过估计,如果接下来从经验回放中提取到的样本正好连续几个都这样的,很有可能导致Q值的发散(它的青春小鸟一去不回来了)。再打个比方,我们玩RPG或者闯关类游戏,有些人为了破纪录经常Save和Load,只要我出了错,我不满意我就加载之前的存档,假设不允许加载呢,就像DQN算法一样训练过程中会退不了,这时候是不是搞两个档,一个档每帧都存一下,另外一个档打了不错的结果再存,也就是若干个间隔再存一下,到最后用间隔若干步数再存的档一般都比每帧都存的档好些呢。当然你也可以再搞更多个档,也就是DQN增加多个目标网络,但是对于DQN则没有多大必要,多几个网络效果不见得会好很多。

1.1 定义模型

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
!pip uninstall -y parl
!pip install parl
import parl
from parl.algorithms import DQN
class MLP(parl.Model):
 """ Linear network to solve Cartpole problem.
 Args:
 input_dim (int): Dimension of observation space.
 output_dim (int): Dimension of action space.
    """
 def __init__(self, input_dim, output_dim):
 super(MLP, self).__init__()
        hidden_dim1 = 256
        hidden_dim2 = 256
        self.fc1 = nn.Linear(input_dim, hidden_dim1)
        self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
        self.fc3 = nn.Linear(hidden_dim2, output_dim)
 def forward(self, state):
        x = F.relu(self.fc1(state))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
 return x

1.2 定义经验回放

from collections import deque
class ReplayBuffer:
 def __init__(self, capacity: int) -> None:
 self.capacity = capacity
 self.buffer = deque(maxlen=self.capacity)
 def push(self,transitions):
 '''_summary_
 Args:
 trainsitions (tuple): _description_
        '''
 self.buffer.append(transitions)
 def sample(self, batch_size: int, sequential: bool = False):
 if batch_size > len(self.buffer):
 batch_size = len(self.buffer)
 if sequential: # sequential sampling
            rand = random.randint(0, len(self.buffer) - batch_size)
            batch = [self.buffer[i] for i in range(rand, rand + batch_size)]
 return zip(*batch)
 else:
            batch = random.sample(self.buffer, batch_size)
 return zip(*batch)
 def clear(self):
 self.buffer.clear()
 def __len__(self):
 return len(self.buffer)

1.3 定义智能体

from random import random
import parl
import paddle
import math
import numpy as np
class DQNAgent(parl.Agent):
 """Agent of DQN.
    """
 def __init__(self, algorithm, memory,cfg):
 super(DQNAgent, self).__init__(algorithm)
 self.n_actions = cfg['n_actions']
 self.epsilon = cfg['epsilon_start']
 self.sample_count = 0 
 self.epsilon_start = cfg['epsilon_start']
 self.epsilon_end = cfg['epsilon_end']
 self.epsilon_decay = cfg['epsilon_decay']
 self.batch_size = cfg['batch_size']
 self.global_step = 0
 self.update_target_steps = 600
 self.memory = memory # replay buffer
 def sample_action(self, state):
 self.sample_count += 1
 # epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
 self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
 math.exp(-1. * self.sample_count / self.epsilon_decay) 
 if random.random() < self.epsilon:
            action = np.random.randint(self.n_actions)
 else:
            action = self.predict_action(state)
 return action
 def predict_action(self, state):
        state = paddle.to_tensor(state , dtype='float32')
 q_values = self.alg.predict(state) # self.alg 是自带的算法
        action = q_values.argmax().numpy()[0]
 return action
 def update(self):
 """Update model with an episode data
 Args:
 obs(np.float32): shape of (batch_size, obs_dim)
            act(np.int32): shape of (batch_size)
            reward(np.float32): shape of (batch_size)
 next_obs(np.float32): shape of (batch_size, obs_dim)
            terminal(np.float32): shape of (batch_size)
        Returns:
            loss(float)
        """
 if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update
 return
 if self.global_step % self.update_target_steps == 0:
 self.alg.sync_target()
 self.global_step += 1
 state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
 self.batch_size)
 action_batch = np.expand_dims(action_batch, axis=-1)
 reward_batch = np.expand_dims(reward_batch, axis=-1)
 done_batch = np.expand_dims(done_batch, axis=-1)
 state_batch = paddle.to_tensor(state_batch, dtype='float32')
 action_batch = paddle.to_tensor(action_batch, dtype='int32')
 reward_batch = paddle.to_tensor(reward_batch, dtype='float32')
 next_state_batch = paddle.to_tensor(next_state_batch, dtype='float32')
 done_batch = paddle.to_tensor(done_batch, dtype='float32')
        loss = self.alg.learn(state_batch, action_batch, reward_batch, next_state_batch, done_batch) 

2、定义训练

def train(cfg, env, agent):
 ''' 训练
    '''
 print(f"开始训练!")
 print(f"环境:{cfg['env_name']},算法:{cfg['algo_name']},设备:{cfg['device']}")
    rewards = [] # record rewards for all episodes
    steps = []
 for i_ep in range(cfg["train_eps"]):
 ep_reward = 0 # reward per episode
 ep_step = 0
        state = env.reset() # reset and obtain initial state
 for _ in range(cfg['ep_max_steps']):
 ep_step += 1
            action = agent.sample_action(state) # sample action
 next_state, reward, done, _ = env.step(action) # update env and return transitions
 agent.memory.push((state, action, reward,next_state, done)) # save transitions
            state = next_state # update next state for env
 agent.update() # update agent
 ep_reward += reward  #
 if done:
 break
 steps.append(ep_step)
 rewards.append(ep_reward)
 if (i_ep + 1) % 10 == 0:
 print(f"回合:{i_ep+1}/{cfg['train_eps']},奖励:{ep_reward:.2f},Epislon: {agent.epsilon:.3f}")
 print("完成训练!")
 env.close()
 res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
 return res_dic
def test(cfg, env, agent):
 print("开始测试!")
 print(f"环境:{cfg['env_name']},算法:{cfg['algo_name']},设备:{cfg['device']}")
    rewards = [] # record rewards for all episodes
    steps = []
 for i_ep in range(cfg['test_eps']):
 ep_reward = 0 # reward per episode
 ep_step = 0
        state = env.reset() # reset and obtain initial state
 for _ in range(cfg['ep_max_steps']):
 ep_step+=1
            action = agent.predict_action(state) # predict action
 next_state, reward, done, _ = env.step(action) 
            state = next_state 
 ep_reward += reward 
 if done:
 break
 steps.append(ep_step)
 rewards.append(ep_reward)
 print(f"回合:{i_ep+1}/{cfg['test_eps']},奖励:{ep_reward:.2f}")
 print("完成测试!")
 env.close()
 return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}

3、定义环境

OpenAI Gym中其实集成了很多强化学习环境,足够大家学习了,但是在做强化学习的应用中免不了要自己创建环境,比如在本项目中其实不太好找到Qlearning能学出来的环境,Qlearning实在是太弱了,需要足够简单的环境才行,因此本项目写了一个环境,大家感兴趣的话可以看一下,一般环境接口最关键的部分即使reset和step。

import gym
import paddle
import numpy as np
import random
import os
from parl.algorithms import DQN
def all_seed(env,seed = 1):
 ''' omnipotent seed for RL, attention the position of seed function, you'd better put it just following the env create function
 Args:
        env (_type_): 
        seed (int, optional): _description_. Defaults to 1.
    '''
 print(f"seed = {seed}")
 env.seed(seed) # env config
 np.random.seed(seed)
 random.seed(seed)
 paddle.seed(seed)
def env_agent_config(cfg):
 ''' create env and agent
    '''
    env = gym.make(cfg['env_name']) 
 if cfg['seed'] !=0: # set random seed
 all_seed(env,seed=cfg["seed"]) 
 n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'n'))
 n_actions = env.action_space.n # action dimension
 print(f"n_states: {n_states}, n_actions: {n_actions}")
 cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
    model = MLP(n_states,n_actions)
 algo = DQN(model, gamma=cfg['gamma'], lr=cfg['lr'])
    memory = ReplayBuffer(cfg["memory_capacity"]) # replay buffer
    agent = DQNAgent(algo,memory,cfg) # create agent
 return env, agent

4、设置参数

到这里所有qlearning模块就算完成了,下面需要设置一些参数,方便大家“炼丹”,其中默认的是笔者已经调好的~。另外为了定义了一个画图函数,用来描述奖励的变化。

import argparse
import seaborn as sns
import matplotlib.pyplot as plt
def get_args():
 """ 
    """
    parser = argparse.ArgumentParser(description="hyperparameters") 
 parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
 parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
 parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") # 训练的回合数
 parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") # 测试的回合数
 parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
 parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") # 折扣因子
 parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") #  e-greedy策略中初始epsilon
 parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") # e-greedy策略中的终止epsilon
 parser.add_argument('--epsilon_decay',default=200,type=int,help="decay rate of epsilon") # e-greedy策略中epsilon的衰减率
 parser.add_argument('--memory_capacity',default=200000,type=int) # replay memory的容量
 parser.add_argument('--memory_warmup_size',default=200,type=int) # replay memory的预热容量
 parser.add_argument('--batch_size',default=64,type=int,help="batch size of training") # 训练时每次使用的样本数
 parser.add_argument('--targe_update_fre',default=200,type=int,help="frequency of target network update") # target network更新频率
 parser.add_argument('--seed',default=10,type=int,help="seed") 
 parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
 parser.add_argument('--device',default='cpu',type=str,help="cpu or gpu") 
 args = parser.parse_args([]) 
 args = {**vars(args)} # type(dict)         
 return args
def smooth(data, weight=0.9): 
 '''用于平滑曲线,类似于Tensorboard中的smooth
 Args:
        data (List):输入数据
        weight (Float): 平滑权重,处于0-1之间,数值越高说明越平滑,一般取0.9
    Returns:
        smoothed (List): 平滑后的数据
    '''
    last = data[0] # First value in the plot (first timestep)
    smoothed = list()
 for point in data:
 smoothed_val = last * weight + (1 - weight) * point  # 计算平滑值
 smoothed.append(smoothed_val) 
        last = smoothed_val 
 return smoothed
def plot_rewards(rewards,cfg,path=None,tag='train'):
 sns.set()
 plt.figure() # 创建一个图形实例,方便同时多画几个图
 plt.title(f"{tag}ing curve on {cfg['device']} of {cfg['algo_name']} for {cfg['env_name']}")
 plt.xlabel('epsiodes')
 plt.plot(rewards, label='rewards')
 plt.plot(smooth(rewards), label='smoothed')
 plt.legend()

5、训练

# 获取参数
cfg = get_args() 
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
plot_rewards(res_dic['rewards'], cfg, tag="train") 
# 测试
res_dic = test(cfg, env, agent)
plot_rewards(res_dic['rewards'], cfg, tag="test") # 画出结果

 

seed = 10
n_states: 4, n_actions: 2
开始训练!
环境:CartPole-v0,算法:DQN,设备:cpu
回合:10/200,奖励:10.00,Epislon: 0.062
回合:20/200,奖励:85.00,Epislon: 0.014
回合:30/200,奖励:41.00,Epislon: 0.011
回合:40/200,奖励:31.00,Epislon: 0.010
回合:50/200,奖励:22.00,Epislon: 0.010
回合:60/200,奖励:10.00,Epislon: 0.010
回合:70/200,奖励:10.00,Epislon: 0.010
回合:80/200,奖励:22.00,Epislon: 0.010
回合:90/200,奖励:30.00,Epislon: 0.010
回合:100/200,奖励:20.00,Epislon: 0.010
回合:110/200,奖励:15.00,Epislon: 0.010
回合:120/200,奖励:45.00,Epislon: 0.010
回合:130/200,奖励:73.00,Epislon: 0.010
回合:140/200,奖励:180.00,Epislon: 0.010
回合:150/200,奖励:167.00,Epislon: 0.010
回合:160/200,奖励:200.00,Epislon: 0.010
回合:170/200,奖励:165.00,Epislon: 0.010
回合:180/200,奖励:200.00,Epislon: 0.010
回合:190/200,奖励:200.00,Epislon: 0.010

 

点击关注,第一时间了解华为云新鲜技术~

标签:CartPole,cfg,self,batch,v0,state,env,action,DQN
From: https://www.cnblogs.com/huaweiyun/p/17502443.html

相关文章

  • 强化学习从基础到进阶-常见问题和面试必知必答[4]::深度Q网络-DQN、double DQN、经验回
    强化学习从基础到进阶-常见问题和面试必知必答[4]::深度Q网络-DQN、doubleDQN、经验回放、rainbow、分布式DQN1.核心词汇深度Q网络(deepQ-network,DQN):基于深度学习的Q学习算法,其结合了价值函数近似(valuefunctionapproximation)与神经网络技术,并采用目标网络和经验回放等方法进......
  • 强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0
    强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v01、定义算法相比于Qlearning,DQN本质上是为了适应更为复杂的环境,并且经过不断的改良迭代,到了NatureDQN(即VolodymyrMnih发表的Nature论文)这里才算是基本完善。DQN主要改动的点有三个:使用深度神经网络替......
  • AI文案撰写客户端 OpenAI ChatGPT v0.11.0
    本文转载自:AI文案撰写客户端OpenAIChatGPTv0.11.0更多内容请访问钻芒博客:https://www.zuanmang.net软件介绍ChatGPTv0.11.0是一款由 OpenAI 官方开发出品的深度学习技术的人工智能聊天机器人软件,它通过大量的语言训练,可以回答各种问题,如科技、历史、地理、数学等,并能生......
  • tryDiv0
    //tryDiv0.cpp:Definestheentrypointfortheconsoleapplication.//#include"stdafx.h"intmain(intargc,char*argv[]){ inti,j,k; i=1; j=0; try { k=i/j; } catch(...) { printf("incatch!\n"); } printf("k=%......
  • v072冒险岛sf开发周记(一)
      上周末的时候看到tx代理了冒险岛手游,但是又还没上线,便回忆起自己从前玩冒险岛的时光。那时候和邻居哥哥们,和同学一起玩,只有冒险家职业,消磨了很多的时光,也认识了一些友善的网络好友,虽然打怪升级真的很慢,也没有好装备很菜,但是和朋友们一起玩的时候还是很快乐的,一起刷刷刷。也......
  • 高带宽pSRAM S27KS0643GABHV023/S27KS0643GABHA020(64Mbit)S27KS0643GABHA023 HyperRAM
    高带宽pSRAMS27KS0643GABHV023/S27KS0643GABHA020(64Mbit)S27KS0643GABHA023HyperRAM™存储器—明佳达供求产品说明:S27KS064364MbitHYPERRAM™器件是一种高速CMOS,自刷新DRAM,具有xSPI(Octal)接口。DRAM阵列使用需要定期刷新的动态单元。当内存没有被xSPI接口主(主机)主动读写......
  • Financial - IRS相关概念(DV01, DVBP, 关键利率久期 KRD, Bucket Risk, )
     一、DVBP,DV01是一个概念以下几个概念,相等: •基点美元价值(dollarvalueofabasispoint,DVBP) •基点价值(pricevalueofabasispoint,PVBP) •基点美元值(dollarvalueofall01,DV01)【定义】其含义是相对于初始价格,如果市场要求收益率上、下波动1个基点时,债券价格......
  • 强化学习基础篇[3]:DQN、Actor-Critic详细讲解
    强化学习基础篇[3]:DQN、Actor-Critic详细讲解1.DQN详解1.1DQN网络概述及其创新点在之前的内容中,我们讲解了Q-learning和Sarsa算法。在这两个算法中,需要用一个Q表格来记录不同状态动作对应的价值,即一个大小为$[状态个数,动作个数]$的二维数组。在一些简单的强化学习环境中,比如......
  • [linux]undefined reference to `__gxx_personality_v0'
    linux程序 #include#include#includeintcount=0;voidctrl_c_count(int);intmain(void){intc;void(*old_handler)(int);old_handler=signal(SIGINT,ctrl_c_count);while((c=getchar()!=''));printf("Ctrl_Ccount=%d",count);......
  • OpenMLDB v0.8 新功能:离线引擎数据源支持 Amazon S3
    简介AmazonS3(以下简称S3)是一种非常受欢迎的云存储服务,它以其卓越的扩展性、安全性和稳定性而广受全球企业和开发者的喜爱。在新发布的OpenMLDBv0.8.0版本中,新增加了对于AmazonS3作为离线数据源的支持,其带来的主要好处包括:安全性和稳定性:S3提供高级别的安全保障,以保护......