首页 > 其他分享 >强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0

强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0

时间:2023-06-24 23:56:44浏览次数:33  
标签:4.1 进阶 cfg self batch v0 state env action

强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0

1、定义算法

相比于Q learning,DQN本质上是为了适应更为复杂的环境,并且经过不断的改良迭代,到了Nature DQN(即Volodymyr Mnih发表的Nature论文)这里才算是基本完善。DQN主要改动的点有三个:

  • 使用深度神经网络替代原来的Q表:这个很容易理解原因
  • 使用了经验回放(Replay Buffer):这个好处有很多,一个是使用一堆历史数据去训练,比之前用一次就扔掉好多了,大大提高样本效率,另外一个是面试常提到的,减少样本之间的相关性,原则上获取经验跟学习阶段是分开的,原来时序的训练数据有可能是不稳定的,打乱之后再学习有助于提高训练的稳定性,跟深度学习中划分训练测试集时打乱样本是一个道理。
  • 使用了两个网络:即策略网络和目标网络,每隔若干步才把每步更新的策略网络参数复制给目标网络,这样做也是为了训练的稳定,避免Q值的估计发散。想象一下,如果当前有个transition(这个Q learning中提过的,一定要记住!!!)样本导致对Q值进行了较差的过估计,如果接下来从经验回放中提取到的样本正好连续几个都这样的,很有可能导致Q值的发散(它的青春小鸟一去不回来了)。再打个比方,我们玩RPG或者闯关类游戏,有些人为了破纪录经常Save和Load,只要我出了错,我不满意我就加载之前的存档,假设不允许加载呢,就像DQN算法一样训练过程中会退不了,这时候是不是搞两个档,一个档每帧都存一下,另外一个档打了不错的结果再存,也就是若干个间隔再存一下,到最后用间隔若干步数再存的档一般都比每帧都存的档好些呢。当然你也可以再搞更多个档,也就是DQN增加多个目标网络,但是对于DQN则没有多大必要,多几个网络效果不见得会好很多。

1.1 定义模型

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
!pip uninstall -y parl
!pip install parl
import parl
from parl.algorithms import DQN

class MLP(parl.Model):
    """ Linear network to solve Cartpole problem.
    Args:
        input_dim (int): Dimension of observation space.
        output_dim (int): Dimension of action space.
    """

    def __init__(self, input_dim, output_dim):
        super(MLP, self).__init__()
        hidden_dim1 = 256
        hidden_dim2 = 256
        self.fc1 = nn.Linear(input_dim, hidden_dim1)
        self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
        self.fc3 = nn.Linear(hidden_dim2, output_dim)

    def forward(self, state):
        x = F.relu(self.fc1(state))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

1.2 定义经验回放

from collections import deque
class ReplayBuffer:
    def __init__(self, capacity: int) -> None:
        self.capacity = capacity
        self.buffer = deque(maxlen=self.capacity)
    def push(self,transitions):
        '''_summary_
        Args:
            trainsitions (tuple): _description_
        '''
        self.buffer.append(transitions)
    def sample(self, batch_size: int, sequential: bool = False):
        if batch_size > len(self.buffer):
            batch_size = len(self.buffer)
        if sequential: # sequential sampling
            rand = random.randint(0, len(self.buffer) - batch_size)
            batch = [self.buffer[i] for i in range(rand, rand + batch_size)]
            return zip(*batch)
        else:
            batch = random.sample(self.buffer, batch_size)
            return zip(*batch)
    def clear(self):
        self.buffer.clear()
    def __len__(self):
        return len(self.buffer)

1.3 定义智能体

from random import random
import parl
import paddle
import math
import numpy as np


class DQNAgent(parl.Agent):
    """Agent of DQN.
    """

    def __init__(self, algorithm, memory,cfg):
        super(DQNAgent, self).__init__(algorithm)
        self.n_actions = cfg['n_actions']
        self.epsilon = cfg['epsilon_start']
        self.sample_count = 0  
        self.epsilon_start = cfg['epsilon_start']
        self.epsilon_end = cfg['epsilon_end']
        self.epsilon_decay = cfg['epsilon_decay']
        self.batch_size = cfg['batch_size']
        self.global_step = 0
        self.update_target_steps = 600
        self.memory = memory # replay buffer

    def sample_action(self, state):
        self.sample_count += 1
        # epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
        self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
            math.exp(-1. * self.sample_count / self.epsilon_decay) 
        if  random.random() < self.epsilon:
            action = np.random.randint(self.n_actions)
        else:
            action = self.predict_action(state)
        return action

    def predict_action(self, state):
        state = paddle.to_tensor(state , dtype='float32')
        q_values = self.alg.predict(state) # self.alg 是自带的算法
        action = q_values.argmax().numpy()[0]
        return action

    def update(self):
        """Update model with an episode data
        Args:
            obs(np.float32): shape of (batch_size, obs_dim)
            act(np.int32): shape of (batch_size)
            reward(np.float32): shape of (batch_size)
            next_obs(np.float32): shape of (batch_size, obs_dim)
            terminal(np.float32): shape of (batch_size)
        Returns:
            loss(float)
        """
        if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update
            return
        
        if self.global_step % self.update_target_steps == 0:
            self.alg.sync_target()
        self.global_step += 1
        state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
            self.batch_size)
        action_batch = np.expand_dims(action_batch, axis=-1)
        reward_batch = np.expand_dims(reward_batch, axis=-1)
        done_batch = np.expand_dims(done_batch, axis=-1)

        state_batch = paddle.to_tensor(state_batch, dtype='float32')
        action_batch = paddle.to_tensor(action_batch, dtype='int32')
        reward_batch = paddle.to_tensor(reward_batch, dtype='float32')
        next_state_batch = paddle.to_tensor(next_state_batch, dtype='float32')
        done_batch = paddle.to_tensor(done_batch, dtype='float32')
        loss = self.alg.learn(state_batch, action_batch, reward_batch, next_state_batch, done_batch) 

2. 定义训练

def train(cfg, env, agent):
    ''' 训练
    '''
    print(f"开始训练!")
    print(f"环境:{cfg['env_name']},算法:{cfg['algo_name']},设备:{cfg['device']}")
    rewards = []  # record rewards for all episodes
    steps = []
    for i_ep in range(cfg["train_eps"]):
        ep_reward = 0  # reward per episode
        ep_step = 0
        state = env.reset()  # reset and obtain initial state
        for _ in range(cfg['ep_max_steps']):
            ep_step += 1
            action = agent.sample_action(state)  # sample action
            next_state, reward, done, _ = env.step(action)  # update env and return transitions
            agent.memory.push((state, action, reward,next_state, done))  # save transitions
            state = next_state  # update next state for env
            agent.update()  # update agent
            ep_reward += reward  #
            if done:
                break
        steps.append(ep_step)
        rewards.append(ep_reward)
        if (i_ep + 1) % 10 == 0:
            print(f"回合:{i_ep+1}/{cfg['train_eps']},奖励:{ep_reward:.2f},Epislon: {agent.epsilon:.3f}")
    print("完成训练!")
    env.close()
    res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
    return res_dic

def test(cfg, env, agent):
    print("开始测试!")
    print(f"环境:{cfg['env_name']},算法:{cfg['algo_name']},设备:{cfg['device']}")
    rewards = []  # record rewards for all episodes
    steps = []
    for i_ep in range(cfg['test_eps']):
        ep_reward = 0  # reward per episode
        ep_step = 0
        state = env.reset()  # reset and obtain initial state
        for _ in range(cfg['ep_max_steps']):
            ep_step+=1
            action = agent.predict_action(state)  # predict action
            next_state, reward, done, _ = env.step(action)  
            state = next_state  
            ep_reward += reward 
            if done:
                break
        steps.append(ep_step)
        rewards.append(ep_reward)
        print(f"回合:{i_ep+1}/{cfg['test_eps']},奖励:{ep_reward:.2f}")
    print("完成测试!")
    env.close()
    return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}


3、定义环境

OpenAI Gym中其实集成了很多强化学习环境,足够大家学习了,但是在做强化学习的应用中免不了要自己创建环境,比如在本项目中其实不太好找到Qlearning能学出来的环境,Qlearning实在是太弱了,需要足够简单的环境才行,因此本项目写了一个环境,大家感兴趣的话可以看一下,一般环境接口最关键的部分即使reset和step。

import gym
import paddle
import numpy as np
import random
import os
from parl.algorithms import DQN
def all_seed(env,seed = 1):
    ''' omnipotent seed for RL, attention the position of seed function, you'd better put it just following the env create function
    Args:
        env (_type_): 
        seed (int, optional): _description_. Defaults to 1.
    '''
    print(f"seed = {seed}")
    env.seed(seed) # env config
    np.random.seed(seed)
    random.seed(seed)
    paddle.seed(seed)
    
def env_agent_config(cfg):
    ''' create env and agent
    '''
    env = gym.make(cfg['env_name']) 
    if cfg['seed'] !=0: # set random seed
        all_seed(env,seed=cfg["seed"]) 
    n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'n'))
    n_actions = env.action_space.n  # action dimension
    print(f"n_states: {n_states}, n_actions: {n_actions}")
    cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
    model = MLP(n_states,n_actions)
    algo = DQN(model, gamma=cfg['gamma'], lr=cfg['lr'])
    memory =  ReplayBuffer(cfg["memory_capacity"]) # replay buffer
    agent = DQNAgent(algo,memory,cfg)  # create agent
    return env, agent

4、设置参数

到这里所有qlearning模块就算完成了,下面需要设置一些参数,方便大家“炼丹”,其中默认的是笔者已经调好的~。另外为了定义了一个画图函数,用来描述奖励的变化。

import argparse
import seaborn as sns
import matplotlib.pyplot as plt
def get_args():
    """ 
    """
    parser = argparse.ArgumentParser(description="hyperparameters")      
    parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
    parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
    parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") # 训练的回合数
    parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") # 测试的回合数
    parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
    parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") # 折扣因子
    parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") #  e-greedy策略中初始epsilon
    parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") # e-greedy策略中的终止epsilon
    parser.add_argument('--epsilon_decay',default=200,type=int,help="decay rate of epsilon") # e-greedy策略中epsilon的衰减率
    parser.add_argument('--memory_capacity',default=200000,type=int) # replay memory的容量
    parser.add_argument('--memory_warmup_size',default=200,type=int) # replay memory的预热容量
    parser.add_argument('--batch_size',default=64,type=int,help="batch size of training") # 训练时每次使用的样本数
    parser.add_argument('--targe_update_fre',default=200,type=int,help="frequency of target network update") # target network更新频率
    parser.add_argument('--seed',default=10,type=int,help="seed") 
    parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
    parser.add_argument('--device',default='cpu',type=str,help="cpu or gpu")  
    args = parser.parse_args([])                
    args = {**vars(args)}  # type(dict)         
    return args
def smooth(data, weight=0.9):  
    '''用于平滑曲线,类似于Tensorboard中的smooth

    Args:
        data (List):输入数据
        weight (Float): 平滑权重,处于0-1之间,数值越高说明越平滑,一般取0.9

    Returns:
        smoothed (List): 平滑后的数据
    '''
    last = data[0]  # First value in the plot (first timestep)
    smoothed = list()
    for point in data:
        smoothed_val = last * weight + (1 - weight) * point  # 计算平滑值
        smoothed.append(smoothed_val)                    
        last = smoothed_val                                
    return smoothed

def plot_rewards(rewards,cfg,path=None,tag='train'):
    sns.set()
    plt.figure()  # 创建一个图形实例,方便同时多画几个图
    plt.title(f"{tag}ing curve on {cfg['device']} of {cfg['algo_name']} for {cfg['env_name']}")
    plt.xlabel('epsiodes')
    plt.plot(rewards, label='rewards')
    plt.plot(smooth(rewards), label='smoothed')
    plt.legend()

5、训练

# 获取参数
cfg = get_args() 
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
 
plot_rewards(res_dic['rewards'], cfg, tag="train")  
# 测试
res_dic = test(cfg, env, agent)
plot_rewards(res_dic['rewards'], cfg, tag="test")  # 画出结果
seed = 10
n_states: 4, n_actions: 2
开始训练!
环境:CartPole-v0,算法:DQN,设备:cpu
回合:10/200,奖励:10.00,Epislon: 0.062
回合:20/200,奖励:85.00,Epislon: 0.014
回合:30/200,奖励:41.00,Epislon: 0.011
回合:40/200,奖励:31.00,Epislon: 0.010
回合:50/200,奖励:22.00,Epislon: 0.010
回合:60/200,奖励:10.00,Epislon: 0.010
回合:70/200,奖励:10.00,Epislon: 0.010
回合:80/200,奖励:22.00,Epislon: 0.010
回合:90/200,奖励:30.00,Epislon: 0.010
回合:100/200,奖励:20.00,Epislon: 0.010
回合:110/200,奖励:15.00,Epislon: 0.010
回合:120/200,奖励:45.00,Epislon: 0.010
回合:130/200,奖励:73.00,Epislon: 0.010
回合:140/200,奖励:180.00,Epislon: 0.010
回合:150/200,奖励:167.00,Epislon: 0.010
回合:160/200,奖励:200.00,Epislon: 0.010
回合:170/200,奖励:165.00,Epislon: 0.010
回合:180/200,奖励:200.00,Epislon: 0.010
回合:190/200,奖励:200.00,Epislon: 0.010

更多优质内容请关注公号:汀丶人工智能

标签:4.1,进阶,cfg,self,batch,v0,state,env,action
From: https://www.cnblogs.com/ting1/p/17501898.html

相关文章

  • MySQL 进阶语法
    selectinto语法在MySQL中,SELECTINTO语法用于将查询结果插入到一个新表或已存在的表中。下面是SELECTINTO的语法示例:创建一个新表并将查询结果插入其中:CREATETABLEnew_table_nameSELECTcolumn1,column2,...FROMoriginal_tableWHEREcondition;这将从ori......
  • k8s进阶4-应用无损发布之健康检查
    一、配置探针kubernetes提供了三种探针(支持exec、tcp和http方式)来探测容器的状态:LivenessProbe:容器存活性检查,用于判断容器是否健康,告诉kubelet一个容器什么时候处于不健康的状态。如果LivenessProbe探针探测到容器不健康,则kubelet将删除该容器,并根据容器的重启策略做相应......
  • 03-指针进阶
    目录一.字符指针1.1使用方式一1.2使用方式二1.3面试考点二.数组指针2.1数组指针的表示形式2.2数组指针的使用2.3内容拓展三.函数指针3.1区分函数指针和指针函数3.2看两个有趣的代码3.2函数指针数组四.回调函数4.1什么是回调函数4.2应用案例,实现qsort可满足任意类......
  • 机器学习从入门到进阶所需学习资料-包括书、视频、源码
    本文整理了一些入门到进阶机器学习所需要的一些免费的精品视频课程,一些优质的书籍和经典的代码实战项目。视频1.1吴恩达老师机器学习课程:•Coursera•网易云课堂•英文笔记•中文笔记、字幕1.2吴恩达深度学习课程•Coursera•网易云课堂•笔记1.3斯坦福CS231n:Co......
  • AI文案撰写客户端 OpenAI ChatGPT v0.11.0
    本文转载自:AI文案撰写客户端OpenAIChatGPTv0.11.0更多内容请访问钻芒博客:https://www.zuanmang.net软件介绍ChatGPTv0.11.0是一款由 OpenAI 官方开发出品的深度学习技术的人工智能聊天机器人软件,它通过大量的语言训练,可以回答各种问题,如科技、历史、地理、数学等,并能生......
  • 【九】解决粘包的进阶方法
    【九】解决粘包的进阶方法为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据struct模块该模块可以把一个类型,如数字,转成固定长度的bytesstruct.pack(‘i’,1111111111111)。。。。。。。。。......
  • Vue进阶(贰零零):window.onresize事件在vue项目中的应用
    属性window.onresize属性可以用来获取或设置当前窗口的resize事件的事件处理函数。在窗口大小改变之后,就会触发resize事件.//vue页面<template><divid='echart'>报表</div></template><script>exportdefault{data(){return{};......
  • 强化学习从基础到进阶-常见问题和面试必知必答[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛
    强化学习从基础到进阶-常见问题和面试必知必答[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛策略、时序差分等以及Qlearning项目实战1.核心词汇概率函数和奖励函数:概率函数定量地表达状态转移的概率,其可以表现环境的随机性。但是实际上,我们经常处于一个未知的环境中,即概率函数和奖励......
  • 强化学习从基础到进阶-案例与实践[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛策略、时序差
    强化学习从基础到进阶-案例与实践[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛策略、时序差分等以及Qlearning项目实战策略最简单的表示是查找表(look-uptable),即表格型策略(tabularpolicy)。使用查找表的强化学习方法称为表格型方法(tabularmethod),如蒙特卡洛、Q学习和Sarsa。本章通过最......
  • 强化学习从基础到进阶-常见问题和面试必知必答[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛
    强化学习从基础到进阶-常见问题和面试必知必答[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛策略、时序差分等以及Qlearning项目实战1.核心词汇概率函数和奖励函数:概率函数定量地表达状态转移的概率,其可以表现环境的随机性。但是实际上,我们经常处于一个未知的环境中,即概率函数和奖励......