前带系数的二项式系数的处理
\(\displaystyle\sum_{k\ge 0}{\binom{n+k}{m+2k}}\binom{2k}{k}\frac{(-1)^k}{k+1}\)
\(\displaystyle \binom{n+k}{m+2k}\) 的处理很巧妙。
\[\begin{aligned} \mathrm{Lemma~1:}&\binom{n}{m}\binom{m}{k}=\binom{n}{k}\binom{n-k}{m-k}\\ \mathrm{Lemma~2:}&\sum_{-q\le k\le l}{\binom{l-k}{r}\binom{q+k}{s}}=\binom{l+q+1}{r+s+1}\\ \end{aligned} \]\(\mathrm{Lemma~2}~Proof:\)
\[\begin{aligned} \mathrm{LHS}&=\sum_{-q\le k\le l}{\binom{l-k}{l-k-r}\binom{q+k}{q+k-s}}\\ &=\sum_{-q\le k\le l}{(-1)^{l-k-r}(-1)^{q+k-s}\binom{-r-1}{l-k-r}\binom{-s-1}{q+k-s}}\\ &=(-1)^{l+q-r-s}\sum_{-q\le k\le l}{\binom{-r-1}{l-k-r}\binom{-s-1}{q+k-s}}\\ &=(-1)^{l+q-r-s}\binom{-r-s-2}{l+q-r-s}\\ &=\binom{l+q+1}{l+q-r-s}\\ &=\binom{l+q+1}{r+s+1}\\ Q.E.D& \end{aligned} \]用 \(\mathrm{Lemma~2}\) 构造以 \(2k\) 为底的二项式系以应用 \(\mathrm{Lemma~1}\) 。
\[\begin{aligned} &=\sum_{k\ge 0}\sum_{i=0}^{n+k-1}{\binom{n-i+k+1}{2k}\binom{i}{m-1}\binom{2k}{k}\frac{(-1)^k}{k+1}}\\ &=\sum_{i\ge 0}{\binom{i}{m-1}}\sum_{0\le k\le i+1-n}{\binom{n-i+k+1}{2k}\binom{2k}{k}\frac{(-1)^k}{k+1}}\\ &=\sum_{i\ge 0}{\binom{i}{m-1}}\sum_{0\le k\le i+1-n}{\binom{n-i+k-1}{k}\binom{n-i-1}{k}\frac{(-1)^k}{k+1}}\\ &=\sum_{i\ge 0}{\binom{i}{m-1}\frac{1}{n-i}}\sum_{0\le k\le i+1-n}{\binom{n-i+k-1}{k}\binom{n-i}{k+1}(-1)^k}\\ &=\sum_{i\ge 0}{\binom{i}{m-1}\frac{1}{n-i}}\sum_{0\le k\le i+1-n}{\binom{i-n}{k}\binom{n-i}{n-i-k-1}}\\ &=\sum_{i\ge 0}{\binom{i}{m-1}\frac{1}{n-i}\binom{0}{n-i-1}}\\ &=\sum_{i\ge 0}{\binom{i}{m-1}\frac{1}{n-i}[i=n-1]}\\ &=\binom{n-1}{m-1} \end{aligned} \]最后得到的是一个非常优美的形式。
标签:le,frac,sum,二十四日,ge,日记,binom,九月,2k From: https://www.cnblogs.com/mklzc/p/16727043.html