备忘用。
排列组合
\[\begin{aligned}A_{n}^{m}=n\left( n-1\right) \cdot \left( n-2\right) \cdot \ldots \cdot \left( n-m+1\right) =\dfrac{n!}{\left( n-m\right) !} =C_{n}^{m}\cdot m!\end{aligned} ={n}^{\underline{m}} \]\[C_{n}^{m}=\dfrac{A_{n}^{m}}{m!}=\dfrac{n!}{\left( n-m\right) !m!}=\dfrac{ n^{\underline{m}}}{ m^{\underline{m}}} \]杨辉三角形
\[C_{n}^{m}=C_{n-1}^{k-1}+C_{n-1}^{k} \]\[C_{n}^{m}=0 \begin{pmatrix}k<0\| k>n\end{pmatrix} \]简单的几个式子:
\[C_{n}^{k}=C_{n}^{n-k} \]\[\sum ^{n}_{i=0}C_{n}^{i}=2^{n} \]\[C_{n}^{0}+C_{n}^{2}+\ldots +C_{n}^{\small\lfloor \dfrac{n}{2}\rfloor \cdot 2}=2^{n-1} \]\[\sum \left( C_{n}^{i}\cdot \sum C_i^{j}\right) =3^{n} \]\[\sum ^{n}_{m=k}C_{m-1}^{k-1}=C_{n}^{k} \]\[\sum ^{k}_{m=0}C_{p}^{m}\cdot C_{q}^{k-m}=C_{p+q}^{k} \]\[k\cdot C_{m}^{k}=m\cdot C_{m-1}^{k-1} \]\[\sum ^{n}_{k=0}k\cdot C_{m}^{k}=\sum ^{n-1}_{k=0}m\cdot C_{m-1}^{k} \]\[\sum ^{n}_{k=0}k\cdot C_{n}^{k}=n \cdot 2^{n-1} \]\[\sum ^{n}_{k=0}k^{2}C_{n}^{k}=n\left( n+1\right) 2^{n-2} \]组合数求和
对角线求和
\[C_{n}^{m}+C_{n+1}^{m+1}+\ldots +C_{n+k}^{m+k}=C_{n+k+1}^{m+k}-C^{m-1}_{n} \]直线求和
\[C_{n}^{m}+C_{n+1}^{m}+\ldots +C_{n+k}^{m}=C_{n+k+1}^{m+1}-C_n^{m+1} \]二项式定理
\[\left( a+b\right) ^{n}=\sum ^{n}_{k=0}C_{n}^{k}\cdot a^{k}b^{n-k} \]\(C_n^m\) 的奇偶性仅与 \((n-m)\&m\) 有关,如果是奇数,其值为 \(0\)。
\(\mathtt{Lucas}\) 定理
若 \(p\) 是质数,则对于任意整数 \(1\leq m\leq n\) 满足:
\[C_{n}^{m}\equiv C_{n\% p}^{m\% p}\cdot C_{n/p}^{m/p}\;\left(mod\; p\right) \] 标签:right,组合,cdot,dfrac,sum,数学,ldots,left From: https://www.cnblogs.com/xcrr/p/17133057.html