首页 > 其他分享 >使用OpenCV实现摄像头测距

使用OpenCV实现摄像头测距

时间:2022-12-22 14:34:21浏览次数:44  
标签:image cv2 目标 相机 OpenCV 摄像头 marker 物体 测距

摄像头测距就是计算照片中的目标物体到相机的距离。可以使用相似三角形(triangle similarity)方法实现,或者使用更复杂但更准确的相机模型的内参来实现这个功能

使用相似三角形计算物体到相机的距离

假设物体的宽度为 W,将其放到离相机距离为 D 的位置,然后对物体进行拍照。在照片上量出物体的像素宽度 P,于是可以得出计算相机焦距 F 的公式:

 比如我在相机前 24 英寸距离(D=24 inches)的位置横着放了一张 8.5 x 11 英寸(W=11 inches)的纸,拍照后通过图像处理得出照片上纸的像素宽度 P=248 pixels。所以焦距 F 等于:

 此时移动相机离物体更近或者更远,我们可以应用相似三角形得到计算物体到相机的距离的公式:

 原理大概就是这样,接下来使用 OpenCV 来实现。

获取目标轮廓

# import the necessary packages
from imutils import paths
import numpy as np
import imutils
import cv2
def find_marker(image):
    # convert the image to grayscale, blur it, and detect edges
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(gray, 35, 125)
    # find the contours in the edged image and keep the largest one;
    # we'll assume that this is our piece of paper in the image
    cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)
    c = max(cnts, key = cv2.contourArea)
    # compute the bounding box of the of the paper region and return it
    return cv2.minAreaRect(c)

定义一个 find_marker 函数,接收一个参数 iamge,用来找到要计算距离的物体。这里我们用一张 8.5 x 11 英寸的纸作为目标物体。第一个任务是在图片中找到目标物体。

下面这三行是先将图片转换为灰度图,并进行轻微模糊处理以去除高频噪声,然后进行边缘检测。

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 35, 125)

做了这几步后图片看起来是这样的:

 现在已经可以清晰地看到这张纸的边缘,接下来需要做的是找出这张纸的轮廓。

cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
c = max(cnts, key = cv2.contourArea)

用 cv2.findContours 函数找到图片中的众多轮廓,然后获取其中面积最大的轮廓,并假设这是目标物体的轮廓。

这种假设只适用于我们这个场景,在实际使用时,在图片中找出目标物体的方法与应用场景有很大关系。

我们这个场景用简单的边缘检测并找出最大的轮廓就可以了。当然为了使程序更具有鲁棒性,也可以用轮廓近似,并剔除不是四个点的轮廓(纸张是一个有四个点的矩形),然后再找出面积最大,具有四个点的轮廓。

我们也可以根据颜色特征在图片中找到目标物体,因为目标物体和背景的颜色有着很明显的不同。还可以应用关键点检测(keypoint detection),局部不变性描述子(local invariant descriptors)和关键点匹配(keypoint matching)来寻找目标。但是这些方法不在本文的讨论范围内,而且高度依赖具体场景。

我们现在得到目标物体的轮廓了,find_marker 函数最后返回的是包含轮廓 (x, y) 坐标、像素长度和像素宽度的边框,

计算距离

接下来该使用相似三角形计算目标到相机的距离。

def distance_to_camera(knownWidth, focalLength, perWidth):
    # compute and return the distance from the maker to the camera
    return (knownWidth * focalLength) / perWidth

distance_to_camera 函数传入目标的实际宽度,计算得到的焦距和图片上目标的像素宽度,就可以通过相似三角形公式计算目标到相机的距离了。

下面是调用 distance_to_camera 函数之前的准备:

# initialize the known distance from the camera to the object, which
# in this case is 24 inches
KNOWN_DISTANCE = 24.0

# initialize the known object width, which in this case, the piece of
# paper is 12 inches wide
KNOWN_WIDTH = 11.0

# load the furst image that contains an object that is KNOWN TO BE 2 feet
# from our camera, then find the paper marker in the image, and initialize
# the focal length
image = cv2.imread("images/2ft.jpg")
marker = find_marker(image)
focalLength = (marker[1][0] * KNOWN_DISTANCE) / KNOWN_WIDTH

首先是测量目标物体的宽度,和目标物体到相机的距离,并根据上面介绍的方法计算相机的焦距。其实这些并不是真正的摄像机标定。真正的摄像机标定包括摄像机的内参,相关知识可以可以查看这里。

使用 cv2.imread 函数从磁盘加载图片,然后通过 find_marker 函数得到图片中目标物体的坐标和长宽信息,最后根据相似三角形计算出相机的焦距。

现在有了相机的焦距,就可以计算目标物体到相机的距离了。

# loop over the images
for imagePath in sorted(paths.list_images("images")):
    # load the image, find the marker in the image, then compute the
    # distance to the marker from the camera
    image = cv2.imread(imagePath)
    marker = find_marker(image)
    inches = distance_to_camera(KNOWN_WIDTH, focalLength, marker[1][0])

    # draw a bounding box around the image and display it
    box = cv2.cv.BoxPoints(marker) if imutils.is_cv2() else cv2.boxPoints(marker)
    box = np.int0(box)
    cv2.drawContours(image, [box], -1, (0, 255, 0), 2)
    cv2.putText(image, "%.2fft" % (inches / 12),
        (image.shape[1] - 200, image.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX,
        2.0, (0, 255, 0), 3)
    cv2.imshow("image", image)
    cv2.waitKey(0)

使用 for 循环遍历每个图片,计算每张图片中目标对象到相机的距离。在结果中,我们根据得到的轮廓信息将方框画了出来,并显示出了距离。下面是得到的几个结果图:

总结

通过这篇文章,我们学会了使用相似三角形计算图片中一个已知物体到相机的距离。

需要先测量出目标物体的实际宽度和目标物体到相机的距离,然后使用图像处理的方法自动计算图片中目标物体的像素宽度,并使用相似三角形计算出相机的焦距。

根据相机的焦距就可以计算图片中的目标物体到相机的距离。

 

标签:image,cv2,目标,相机,OpenCV,摄像头,marker,物体,测距
From: https://www.cnblogs.com/suoyike1001/p/16998612.html

相关文章

  • OpenCV核心功能(核心模块)
    Mat-基本图像容器目标我们有多种方式从现实世界中获取数字图像:数码相机,扫描仪,计算机断层扫描和磁共振成像等等。在任何情况下,我们(人类)看到的都是图像。然而,当将其转换为......
  • OpenCV官方文档(入门篇)
    OpenCV在Windows中安装此处的描述在Windows7SP1上进行了测试。然而,它也应该适用于任何其他相对现代的Windows操作系统。如果您按照以下步骤后遇到错误,请随时通过Open......
  • 基于opencv和QT的摄像头采集代码( GoQTtemplate3持续更新)
    GoQTtemplate3是我为编写Linux下图像处理程序实现的框架,希望能够为大家解决Linux环境下桌面图像处理程序,提供一些帮助。文中相关代码请参考:​​https://github.com/jsxyhe......
  • OpenCV和RTSP的综合研究
    一、RTSP是什么?用来干什么?RTSP(RealTimeStreamingProtocol),RFC2326,实时流传输协议,是TCP/IP协议体系中的一个应用层协议,由哥伦比亚大学、网景和RealNetworks公司提交的IETF......
  • AnswerOpenCV(0416)一周佳作欣赏
    2017年4月16日一周AnswerOpenCV佳作赏析1、HelloHowtosmoothedgeoftextinbinaryimage,basedonthreshold.Somethinglikeanti-aliasingbyopenCv?example......
  • MinGW编译OpenCV4.5(64位/32位通用,附编译完成包下载)
    前言因为本人经常用MinGW编译器,而且习惯用64位,但是上网搜索配置方法发现很多都是32位的,而且版本差距太大的话成功率的也不是很高,不知道是不是我自己的原因,然后在面向浏......
  • python安装opencv避坑
    用python安装opencv-python提示报:ModuleNotFoundError:Nomodulenamed‘skbuild’pip3install-ihttps://pypi.tuna.tsinghua.edu.cn/simplescikit-build Prob......
  • 基于Unet+opencv实现天空对象的分割、替换和美化
       原文地址:https://www.cnblogs.com/jsxyhelu/p/16995892.html     传统图像处理算法进行“天空分割”存在精度问题且调参复杂,无法很好地应对云雾、阴霾等......
  • OpenCV Forum学习(2022-12-20)
    今天准备了3个问题,涵盖了编译、机制和算法,按照先容易后困难的顺序进行整编。1、BuildsamplesprogramsBuildsamplesprograms-C++-OpenCV问题:There’ssomegre......
  • vscode opencv代码无法补全
    使用vscode编程过程遇到opencv相关的代码不能补全解决办法:c_cpp_properties.json文件添加如下内容,//因为代码中include<opencv2/...>,所以下面的路径写到"/usr/include/ope......