首页 > 其他分享 >[water wave] Ray theory-5

[water wave] Ray theory-5

时间:2022-12-22 09:56:03浏览次数:57  
标签:prime infty right theory int water theta left Ray

the depth slowly vary for water wave 

P100-1 Show:

\[\theta_x^2+\theta_y^2=c_0 \tag{1} \]

has a solution in this form:

\[\theta=f(x+\lambda y) \]

method-1

We can regard equ (1) as:

\[\theta_x \theta_x+\theta_y \theta_y=c_0 \]

then the characteristic equation:

\[\begin{gathered} x_\tau=\theta_x,\quad y_\tau=\theta_y, \quad z_\tau=c_0 \\ \rightarrow z=\theta=c_0 \tau+c_1, \ldots \text { unsolved } \end{gathered} \]

method-2

consider fourier transform:
provided that:

\[F[\theta(x)]=\bar{\theta}(s) \]

then:

\[F\left[\theta_x\right]=\text { is } \bar{\theta}(s) \]

According to Energy integral

\[\int_{-\infty}^{+\infty}[f(t)]^2 d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|F(\omega)|^2 d \omega \]

rewrite equ (1)

\[\int_{-\infty}^{+\infty}\left[\theta_x^2+\theta_y^2\right] d x=\int_{-\infty}^{+\infty} c_0 d x \tag{2} \]

or

\[\int_{-\infty}^{+\infty}\left[\theta_x^2+\theta_y^2\right] d y=\int_{-\infty}^{+\infty} c_0 d y \tag{3} \]

equ (2) can be writed as

\[\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left[s^2 \bar{\theta}^2(s)+\bar{\theta}_y^2(s)\right] d s=\int_{-\infty}^{+\infty} c_0 d x \]

... unsolved

method-3

[solution from stack exchange](partial differential equations - How to solve \((f_x)^2+(f_y)^2=4(1-f(x,y))(f(x,y))^2\)? - Mathematics Stack Exchange)

We look for particular solution in the form:\(\theta(x+y)\)
note that:
Let \(u=x+y\)

\[\left\{\begin{array}{l}\theta_x=\theta^{\prime} \frac{\partial u}{\partial x}=\theta^{\prime} \\ \theta_y=\theta^{\prime} \frac{\partial u}{\partial y}=\theta^{\prime}\end{array}\right. \]

rewrite eq (1)

\[\left(\theta^{\prime}\right)^2+\left(\theta^{\prime}\right)^2=c_0 \]

\[\left(\theta^{\prime}\right)^2=\frac{c_0}{2} \quad \theta^{\prime}=A_0 \quad A_0=\sqrt{\frac{C_0}{2}} \]

\[\theta=A_0 u+c_1, \quad c_1 \rightarrow \text{ constant} \]

Q.E.D

[1] Johnson, R. (1997). A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge Texts in Applied Mathematics). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511624056

标签:prime,infty,right,theory,int,water,theta,left,Ray
From: https://www.cnblogs.com/cicada-math/p/16997711.html

相关文章

  • graylog5_被动接受Nginx日志的单机部署流程
    一、安装与部署设备信息:Centos7garylog版本:graylog5.0graylog5.0需要的组件以及版本要求:OpenJDK17(embeddedinthe5.0installationfile):这个graylog自带的不用......
  • [CF1325E] Ehab's REAL Number Theory Problem
    Ehab'sREALNumberTheoryProblem题目描述Youaregivenanarray$a$oflength$n$thathasaspecialcondition:everyelementinthisarrayhasatmost7......
  • Day25.2.Arrays类
    Day25.2.Arrays类1.介绍数组工具类java.util.Arrays由于数组对象本身并没有什么方法可以调用,但API中提供了工具类Arrays供使用,从而对数组对象进行一些基本操作具......
  • 数组拷贝之arraycopy
      本文主要分两部分:手动实现数组拷贝功能使用并分析System类中的数组拷贝方法1.手动实现数组拷贝功能首先来看看我们的需求:有两个已知数组如上图,从src数组中拷......
  • LinkedBlockingQueue、ArrayBlockingQueue、SynchronousQueue、ConcurrentLinkedQueue
    在jdk中有许多的队列,队列的使用还是有一些难度的,因为涉及到了并发等概念,现在我们列举一下队列的特点:并发情况下不会有线程安全问题队列都有元素都有添加(生产者端使用)、获取(......
  • [water wave] Ray theory-4
    thedepthslowlyvaryforwaterwavelet'scontinue\[\frac{\partial(\omega)}{\partialk}=\frac{\partial}{\partialk}\left[\frac{\sigma}{\delta^2}\tanh[\si......
  • java中 JSONArray 与 List 相互转换
     1.JSONArray转ListList<T>list=JSONObject.parseArray(array.toJSONString(),T.class);//转换语句1 List<T>list=JSONArray.parseArray(array.toJSONString......
  • RayLink 远控软件又推出 2 个重磅宝藏功能免费用
    你有没有在远程办公时,担心他人偷窥电脑?以致于保密性资料或私密信息,遭到泄露、创意被剽窃......又或是遇到过邻座同事屏幕前明明没人,鼠标箭头却自个浏览起网页的惊悚画面?如......
  • List接口-ArrayList、LinkedList和Vector
    1.List接口和常用方法1.1List接口基本介绍importjava.util.ArrayList;importjava.util.List;publicclassList_{@SuppressWarnings({"all"})public......
  • 什么情况用ArrayList or LinkedList呢?
    ArrayList和LinkedList是Java集合框架中用来存储对象引用列表的两个类。ArrayList和LinkedList都实现List接口。先对List做一个简单的了解:列表(list)是元素的有序......