首页 > 其他分享 >[water wave] Ray theory-4

[water wave] Ray theory-4

时间:2022-12-21 08:33:54浏览次数:40  
标签:right frac theory sigma water partial Ray omega left

the depth slowly vary for water wave

let's continue

\[\frac{\partial(\omega)}{\partial k}=\frac{\partial}{\partial k}\left[\frac{\sigma}{\delta^2} \tanh [\sigma(1-B)]]\right. \]

the RHD :

\[\begin{aligned} R H D & =\frac{k+2 D k \sqrt{k^2+l^2} \delta \operatorname{csch}\left[2 D \sqrt{k^2+l^2} \delta\right] \omega}{2\left(k^2+l^2\right)} \\ & =\frac{k \omega(1+2 \sigma D \operatorname{csch}(2 \sigma D)}{2 \sigma^2 / \delta^2} \\ & =\frac{k \omega \delta^2}{2 \sigma^2}\left[1+\frac{2 \sigma D}{\sinh (2 \sigma D)}\right] \end{aligned} \]

Q.E.D

p98-1 show:

\[\frac{\partial}{\partial T}\left(\frac{E}{\omega}\right)+\nabla \cdot\left(\frac{E}{\omega} \vec c_g\right)=0, \vec c_g=\left(\frac{\partial \omega}{\partial k}, \frac{\partial \omega}{\partial l}\right) \]

Since

\[E=\frac{1}{2} \omega^2 A_0^2 \cosh ^2 \sigma D \]

\[\nabla \cdot\left(\frac{E}{\omega} \vec c_g\right)=\nabla \cdot\left(\frac{1}{2} \omega A_0^2 \cosh ^2 (\sigma D)\vec c_g\right) \]

we have:

\[\begin{gathered} \vec{k} \int_B^1 \beta_0^2 d z=\left(\omega A_0^2 \cosh ^2 \sigma D\right) \vec c_g \\ \nabla \cdot\left(\vec{k} \int_B^1 \beta_0^2 d z\right)+\left[\frac{\partial}{\partial T}\left(\omega \beta_0^2\right)\right]_{z=1}=0 \quad(1) \end{gathered} \]

hence:

\[\nabla \cdot\left(\vec{k} \int_B^1 \beta_0^2 d z\right)=\nabla \cdot\left(\frac{2 E}{\omega} \vec c_g\right)=2 \nabla \cdot\left(\frac{E}{\omega} \vec c_g\right) \]

from equ 2.77

\[\beta_0=A_0 \cosh [\sigma(z-B)] \]

then:

\[\begin{aligned} \frac{\partial}{\partial T}\left[\omega \beta_0^2\right]_{z=1} & =\frac{\partial}{\partial T}\left[\omega A_0^2 \cosh ^2 \sigma D\right] \\ & =\frac{\partial}{\partial T}\left[\frac{2 E}{\omega}\right] \end{aligned} \]

Substitute (2) (3) to (1)

\[2 \nabla \cdot\left(\frac{E}{\omega} \vec c_g\right)+2 \frac{\partial}{\partial T}\left(\frac{E}{\omega}\right)=0 \]

\(Q \cdot E \cdot D\)

[1] Johnson, R. (1997). A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge Texts in Applied Mathematics). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511624056

标签:right,frac,theory,sigma,water,partial,Ray,omega,left
From: https://www.cnblogs.com/cicada-math/p/16995471.html

相关文章

  • java中 JSONArray 与 List 相互转换
     1.JSONArray转ListList<T>list=JSONObject.parseArray(array.toJSONString(),T.class);//转换语句1 List<T>list=JSONArray.parseArray(array.toJSONString......
  • RayLink 远控软件又推出 2 个重磅宝藏功能免费用
    你有没有在远程办公时,担心他人偷窥电脑?以致于保密性资料或私密信息,遭到泄露、创意被剽窃......又或是遇到过邻座同事屏幕前明明没人,鼠标箭头却自个浏览起网页的惊悚画面?如......
  • List接口-ArrayList、LinkedList和Vector
    1.List接口和常用方法1.1List接口基本介绍importjava.util.ArrayList;importjava.util.List;publicclassList_{@SuppressWarnings({"all"})public......
  • 什么情况用ArrayList or LinkedList呢?
    ArrayList和LinkedList是Java集合框架中用来存储对象引用列表的两个类。ArrayList和LinkedList都实现List接口。先对List做一个简单的了解:列表(list)是元素的有序......
  • [water wave] Ray theory-3
    thedepthslowlyvaryforwaterwavep96-1show\[\beta_0=A_0\cosh[\sigma(z-B)]\]Wehave:(notethat\(\omega\rightarrow\)omega)\[\beta_{0zz}-\sigma^......
  • 并发容器之CopyOnWriteArrayList
    Copy-On-Write简称COW,是一种用于程序设计中的优化策略。其基本思路是,从一开始大家都在共享同一个内容,当某个人想要修改这个内容的时候,才会真正把内容Copy出去形成一......
  • 游戏引擎中的实时渲染和在V-Ray中渲染有什么区别 2022-11-25
    游戏引擎中的实时渲染和在V-Ray中渲染有什么区别,下面我们一起来分析一下,从2个方面来具体分析实时渲染和在V-Ray中渲染种的不一样的区别。原理区别VRay等渲染器原理上叫......
  • List<Map<String,Object>> allList = new ArrayList<>(); 针对Object进行 List 排序
    List<Map<String,Object>>allList=newArrayList<>();Collections.sort(allList,newComparator<Map<String,Object>>(){publicintcompare(Map<String,Objec......
  • 关于ArrayList的5道面试题
    我以面试官的身份参加过很多Java的面试,以下是五个比较有技巧的问题,我发现有些初级到中级的Java研发人员在这些问题上没有完全弄明白,似懂非懂。所以我写了一篇相关的文章,帮助......
  • [water wave] Ray theory-2
    thedepthslowlyvaryforwaterwavep94-1show:\[\phi_z=a\delta^2\left(\phi_xB_{\bar{x}}+\phi_yB_{\bar{y}}\right)\text{on}z=B(\bar{x},\bar{y})\]S......