首页 > 其他分享 >4.3.2 等比数列的综合应用

4.3.2 等比数列的综合应用

时间:2022-12-05 20:36:01浏览次数:57  
标签:right 等比数列 4.3 dfrac therefore 应用 qquad left

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

等比数列的定义

如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,
这个常数叫做等比数列的公比,记为\(q\).
代数形式: \(\dfrac{a_n}{a_{n-1}}=q\)\(( q\)是常数,\(n≥2)\) 或 \(\dfrac{a_{n+1}}{a_n}=q\)\(( q\)是常数,\(n∈ N^* )\)
 

等比中项

若\(a\),\(b\) ,\(c\)成等比数列,则\(b\)称\(a\)与\(c\)的等差中项,则\(b^2=ac\);
 

证明一个数列是等比数列的方法

① 定义法: \(\dfrac{a_n}{a_{n-1}}=q\)\(( q\)是常数,\(n≥2)⇒\{a_n\}\)是等比数列;
② 中项法:\(a_{n+1}^2=a_n a_{n+2} (a_n≠ 0 ,n∈ N^*)⇒\{a_n\}\)是等比数列;
③ 通项公式法:若数列的通项公式是形如\(a_n=k\cdot q^n\) \((k ,q\)是不为\(0\)常数\()\), 则数列\(\{a_n \}\)是等比数列.
④ 前\(n\)项和法:若数列的前\(n\)项和是形如\(S_n=k\cdot q^n-k\)\((k ,q\)是常数且\(k≠0\),\(q≠0\),\(1)\),则数列\(\{a_n \}\)是等比数列.
 

通项公式

等比数列\(\{a_n \}\)的首项为\(a_1\),公比为\(q\),则 \(a_n=a_1 q^{n-1}\).(由定义与累乘法可得)
 

前n项和

等比数列\(\{a_n \}\)的首项为\(a_1\),公比为\(q\),则其前\(n\)项和为 \(S_n= \begin{cases}n a_1 & (q=1) \\ \dfrac{a_1\left(1-q^n\right)}{1-q} & (q \neq 1)\end{cases}\)
(由错位相减法可证)
使用时注意公比是否等于\(1\),若不确定,使用时需要分类讨论.
 

基本性质

\((\)其中\(m ,n ,p ,t∈N^*)\)
设\(\{a_n \}\)是首项为\(a_1\), 公比为\(q\)的等比数列,那么
(1) 若\(m+n=p+t\), 则\(a_m a_n=a_p a_t\);
(2) \(a_n=a_m q^{n-m}\);
(3) \(q^{n-m}=\dfrac{a_n}{a_m}\);
(4) 数列\(\{λa_n\}\)\((λ\)是不为零的常数\()\)仍是公比为\(q\)的等比数列;若数列\(\{b_n\}\)是公比为\(t\)的等比数列,
则数列\(\{a_n b_n\}\)是公比为\(q\cdot t\)的等比数列;
(5)下标成等差数列且公差为\(m\)的项\(a_k\) , \(a_{k+m}\) , \(a_{k+2m}\),\(…\)\((k ,m∈N^*)\)组成公比为\(q^m\)的等比数列;
(6)若\(q≠-1\),则\(S_n\) ,\(S_{2n}-S_n\) ,\(S_{3n}-S_{2n}\) ,\(…\)成等比数列;(\(∵q=-1\),\(n\)是偶数时,\(S_n=0\))
 

基本方法

【题型1】 等比数列的基本运算

【典题1】 若公比为\(2\)的等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),且\(a_2\),\(9\),\(a_5\)成等差数列,则\(S_{20}=\) (  )
 A. \(2^{22}-1\) \(\qquad \qquad \qquad\) B. \(2^{21}-1\) \(\qquad \qquad \qquad\) C. \(2^{20}-1\) \(\qquad \qquad \qquad\) D. \(2^{19}-1\)
解析 设等比数列\(\{a_n \}\)的首项为\(a_1\),已知公比\(q=2\),且\(a_2\),\(9\),\(a_5\)成等差数列,
\(18=a_2+a_5=2a_1+16a_1\),解得\(a_1=1\).
\(\therefore S_{20}=\dfrac{1 \times\left(1-2^{20}\right)}{1-2}=2^{20}-1\).
故选:\(C\).
 

【典题2】 已知数列\(\{a_n \}\)是公差不为零的等差数列,\(\{b_n \}\)为等比数列,且\(a_1=b_1=1\),\(a_2=b_2\),\(a_4=b_3\),
设\(c_n=a_n+b_n\),则数列\(\{c_n \}\)的前\(10\)项和为\(\underline{\quad \quad}\) .
解析 设等差数列\(\{a_n \}\)的公差为\(d≠0\),等比数列\(\{b_n\}\)的公比为\(q\),
\(\because a_1=b_1=1\),\(a_2=b_2\),\(a_4=b_3\),
\(\therefore 1+d=q\),\(1+3d=q^2\),\(d≠0\),解得\(d=1\),\(q=2\).
\(\therefore a_n=1+n-1=n\),\(b_n=2^{n-1}\).
\(\therefore c_n=a_n+b_n=n+2^{n-1}\).
则数列\(\{c_n \}\)的前\(10\)项和\(\dfrac{10 \times(1+10)}{2}+\dfrac{2^{10}-1}{2-1}=1078\).
 

【巩固练习】

1.设正项等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(2S_3=3a_2+8a_1\),则公比\(q=\)(  )
 A.\(2\)\(\qquad \qquad \qquad \qquad\) B.\(-\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(2\)或\(-\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) D.\(2\)或 \(-\dfrac{3}{2}\)
 

2.已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),且\(2S_3\),\(3S_5\),\(4S_6\)成等差数列,则数列\(\{a_n \}\)的公比q=$(  )
 A.\(1\)或\(\dfrac{1}{2}\) \(\qquad \qquad\) B.\(-1\)或\(-\dfrac{1}{2}\) \(\qquad \qquad\) C.\(-1\)或\(2\) \(\qquad \qquad\) D.\(1\)或\(-2\)
 

3.设正项等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(2S_3=3a_2+8a_1\),\(S_8=2S_7+2\),则\(a_2=\)(  )
 A.\(4\) \(\qquad \qquad \qquad \qquad\) B.\(3\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.\(1\)
 

参考答案

  1. 答案 \(A\)
    解析 由\(2S_3=3a_2+8a_1\),有\(2(a_1+a_2+a_3 )=3a_2+8a_1\),即\(2a_3-a_2-6a_1=0\),
    由等比数列的通项公式得\(2a_1 q^2-a_1 q-6a_1=0\),
    即\(2q^2-q-6=0\),解得\(q=2\)或\(q=-\dfrac{3}{2}\),
    由数列为正项等比数列, \(\therefore q=2\).
    故选:\(A\).

  2. 答案 \(B\)
    解析 \(\because2S_3\),\(3S_5\),\(4S_6\)成等差数列,\(\therefore 6S_5=2S_3+4S_6\),
    即\(6(a_1+a_2+a_3+a_4+a_5 )=2(a_1+a_2+a_3 )+4(a_1+a_2+a_3+a_4+a_5+a_6 )\),
    整理得\(6a_4+6a_5=4a_4+4a_5+4a_6\),即\(4a_6-2a_5-2a_4=0\),
    \(\because a_4≠0\),\(\therefore 2q^2-q-1=0\),解得\(q=1\)或\(-\dfrac{1}{2}\),
    故选:\(B\).

  3. 答案 \(A\)
    解析 设正项等比数列\(\{a_n \}\)的公比为\(q\),
    \(\because 2S_3=3a_2+8a_1\),
    \(\therefore 2(a_1+a_2+a_3 )=3a_2+8a_1\),即\(6a_1+a_2-2a_3=0\),
    \(\therefore 6a_1+a_1 q-2a_1 q^2=0\),
    \(\because a_1>0\),
    \(\therefore 6+q-2q^2=0\),解得\(q=2\)或\(q=-\dfrac{3}{2}\)(舍去),\(\therefore q=2\),
    \(\because S_8=2S_7+2\),\(\therefore S_7+a_8=2S_7+2\),\(\therefore a_8=S_7+2\),
    \(\therefore a_1 q^7=\dfrac{a_1\left(1-q^7\right)}{1-q}+2\),
    \(\because q=2\), 解得\(a_1=2\),
    \(\therefore 128a_1=127a_1+2\),解得\(a_1=2\),
    \(\therefore a_2=a_1 q=4\).
    故选:\(A\).
     

【题型2】 等比数列的基本性质的运用

【典题1】 (多选)在递增的等比数列\(\{a_n \}\)中,\(S_n\)是数列\(\{a_n \}\)的前\(n\)项和,若\(a_1 a_4=32\),\(a_2+a_3=12\),则下列说法正确的是(  )
 A.\(q=1\) \(\qquad \qquad\) B.数列\(\{S_n+2\}\)是等比数列\(\qquad \qquad\) C.\(S_8=510\) \(\qquad \qquad\) D.数列\(\{\lg ⁡a_n \}\)是公差为\(2\)的等差数列
解析 由题意,根据等比中项的性质,可得\(a_2 a_3=a_1 a_4=32>0\),\(a_2+a_3=12>0\),
故\(a_2>0\),\(a_3>0\).
根据根与系数的关系,可知\(a_2\),\(a_3\)是一元二次方程\(x^2-12x+32=0\)的两个根.
解得\(a_2=4\),\(a_3=8\),或\(a_2=8\),\(a_3=4\).
\(\because\)等比数列\(\{a_n \}\)是递增数列,\(\therefore q>1\).
\(\therefore a_2=4\),\(a_3=8\)满足题意.
\(\therefore q=2\), \(a_1=\dfrac{a_2}{q}=2\).故选项\(A\)不正确.
\(a_n=a_1⋅q^{n-1}=2^n\).
\(\because S_n=\dfrac{2\left(1-2^n\right)}{1-2}=2^{n+1}-2\), \(\therefore S_n+2=2^{n+1}=4 \cdot 2^{n-1}\).
\(\therefore\)数列\(\{S_n+2\}\)是以\(4\)为首项,\(2\)为公比的等比数列.故选项\(B\)正确.
\(S_8=2^{8+1}-2=512-2=510\).故选项\(C\)正确.
\(\because \lg ⁡a_n=\lg ⁡2^n=n\lg ⁡2\).
\(\therefore\) 数列\(\{\lg ⁡a_n \}\)是公差为\(\lg ⁡2\)的等差数列.故选项\(D\)不正确.
故选:\(BC\).
 

【典题2】 等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),前\(n\)项积为\(T_n\),\(a_4-a_2=6\),\(a_5-a_3=12\),当 \(\dfrac{T_n}{\left(S_n+1\right)^{\frac{7}{2}}}\)最小时,\(n\)的值为(  )
 A.\(3\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C.\(5\) \(\qquad \qquad \qquad \qquad\) D.\(6\)
解析 等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),前\(n\)项积为\(T_n\),\(a_4-a_2=6\),\(a_5-a_3=12\),
当\(q≠1\)时,\(a_2 (q^2-1)=6\),\(a_2 q^3-a_2 q=12\),
两式相除得\(q=2\),
将\(q=2\)代入\(a_2 (q^2-1)=6\),解得\(a_2=2\),
\(\therefore a_1=1\), \(\therefore S_n=\dfrac{1-2^n}{1-2}=2^n-1\),
\(T_n=1×2×2^2×2^3×⋯×2^{n-1}=2^{\frac{n(n-1)}{2}}\),
\(\therefore \dfrac{T_n}{\left(S_n+1\right)^{\frac{7}{2}}}=\dfrac{2^{\frac{n(n-1)}{2}}}{2^{\frac{7 n}{2}}}=2^{\frac{n^2-8 n}{2}}\),
\(\therefore n=4\)时, \(\dfrac{n^2-8 n}{2}\)取得最小值,即当 \(\dfrac{T_n}{\left(S_n+1\right)^{\frac{7}{2}}}\)最小时,\(n\)的值为\(4\).
故选:\(B\).
 

【巩固练习】

1.已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(a_1+2a_2=0\),\(S_3=\dfrac{3}{4}\),且\(a⩽S_n⩽a+2\),则实数\(a\)的取值范围是(  )
 A.\([-1,0]\) \(\qquad \qquad \qquad\) B.\(\left[-1,\dfrac{1}{2}\right]\) \(\qquad \qquad \qquad\) C.\(\left[\dfrac{1}{2},1\right]\) \(\qquad \qquad \qquad\) D.\(\left[0,1\right]\)
 

2.公比为\(q\)的等比数列\(\{a_n \}\),其前\(n\)项和为\(S_n\),前\(n\)项积为\(T_n\),满足\(a_1>1\),\(a_{2021}\cdot a_{2022}>1\), \(\dfrac{a_{2021}-1}{a_{2022}-1}<0\).则下列结论正确的是(  )
 A.\(q<0\) \(\qquad \qquad\) B.\(a_{2021}\cdot a_{2023}>1\) \(\qquad \qquad\)C.\(S_n\)的最大值为\(S_{2023}\) \(\qquad \qquad\) D.\(T_n\)的最大值为\(T_{2021}\)
 

3.(多选)已知数列\(\{a_n \}\)是公比为\(q\)的等比数列,其前\(n\)项和为\(S_n\),则下列结论正确的是(  )
 A.若数列\(\{a_n \}\)是正项等比数列,则数列\(\{\lg ⁡a_n \}\)是等差数列
 B.若\(a_3=\dfrac{3}{2}\), \(S_3=\dfrac{9}{2}\),则\(q=-\dfrac{1}{2}\)
 C.若\(a_3=1\),\(a_7=16\),则\(a_5=4\)
 D.若 \(S_6-S_4=6(S_4-S_2 )\),则\(q^2=6\)
 

4.已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),公比\(q>0\),\(a_1=1\), \(a_{12}=9 a_{10}\),
若数列\(\{t+S_n \}\)为等比数列,则实数\(t=\)\(\underline{\quad \quad}\).
 

5.已知等比数列\(\{a_n \}\),\(a_n>0\),\(a_1=256\),\(S_3=448\),\(T_n\)为数列\(\{a_n \}\)的前\(n\)项乘积,
则当\(T_n\)取得最大值时,\(n=\)\(\underline{\quad \quad}\).
 

参考答案

  1. 答案 \(B\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\),\(\because a_1+2a_2=0\), \(S_3=\dfrac{3}{4}\),
    \(\therefore a_1 (1+2q)=0\),\(a_1 (1+q+q^2 )=\dfrac{3}{4}\),解得:\(a_1=1\),\(q=-\dfrac{1}{2}\),
    \(\therefore S_n=\dfrac{1-\left(-\dfrac{1}{2}\right)^n}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{2}{3}\left[1-\left(-\dfrac{1}{2}\right)^n\right]\).
    当\(n=1\)时,\(S_n\)取最大值\(1\),当\(n=2\)时,\(S_n\)取最小值\(\dfrac{1}{2}\),
    \(\therefore\left\{\begin{array}{l} a \leqslant \dfrac{1}{2} \\ a+2 \geqslant 1 \end{array}\right.\),\(\therefore -1⩽a⩽\dfrac{1}{2}\),
    故选:\(B\).

  2. 答案 \(D\)
    解析 等比数列\(\{a_n \}\)中,\(a_1>1\),\(a_{2021}\cdot a_{2022}>1\), \(\dfrac{a_{2021}-1}{a_{2022}-1}<0\).
    所以\(a_{2021}>1\),\(0<a_{2022}<1\),\(0<q<1\),\(A\)错误;
    故当\(n=2021\)时,\(T_n\)取得最大值,\(D\)正确;
    由于数列各项都为正数,和没有最大值,\(C\)错误;
    由题意得,\(0<a_{2022}<1\),\(0<a_{2023}<1\),
    所以\(a_{2021}\cdot a_{2023}=a_{2022}^2<1\),\(B\)错误.
    故选:\(D\).

  3. 答案 \(AC\)
    解析 对于\(A\),不妨设正项等比数列\(\{a_n \}\)的通项公式\(a_n=a_1 q^{n-1}\),
    因为\(\lg ⁡a_n={n-1}\lg ⁡q+\lg ⁡a_1\)是\(n\)的一次式,\(\{\lg ⁡a_n \}\)是等差数列,
    所以\(A\)正确,
    对于\(B\),因为\(S_3=a_1+a_2+a_3=a_3 (q^{-2}+q^{-1}+1)\),
    所以 \(q^{-2}+q^{-1}+1=3\),即\(2q^2-q-1=0\),解得\(q=1\)或\(q=-\dfrac{1}{2}\),
    所以\(B\)不正确,
    对于\(C\),若\(a_3=1\),\(a_7=16\),
    则\(a_5^2=a_3 a_7=16\),注意到 \(\dfrac{a_5}{a_3}=q^2>0\),
    所以\(a_5=4\),所以\(C\)正确,
    对于\(D\),由\(S_6-S_4=6(S_4-S_2 )\)得\(a_5+a_6=6(a_3+a_4 )\),
    所以\(q^2 (a_3+a_4 )=6(a_3+a_4 )\),
    当\(a_3+a_4=0\)时,\(q=-1\),\(q^2=1\),所以\(D\)不正确.
    故选:\(AC\).

  4. 答案 \(\dfrac{1}{2}\)
    解析 因为 \(a_{12}=9 a_{10}\),所以\(a_1\cdot q^{11}=9a_1\cdot q^9\),即\(q^2=9\),
    因为\(q>0\),所以\(q=3\),
    所以 \(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=\dfrac{3^n-1}{2}\),
    所以\(S_1=1\),\(S_2=4\),\(S_3=13\),
    因为数列\(\{t+S_n \}\)为等比数列,
    所以\((t+S_2 )^2=(t+S_1 )\cdot (t+S_3 )\),
    所以\((t+4)^2=(t+1)\cdot (t+13)\),解得\(t=\dfrac{1}{2}\).

  5. 答案 \(8\)或\(9\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\),\(\because a_n>0\),\(\therefore q>0\).
    \(\because a_1=256\),\(S_3=448\),\(\therefore 256(1+q+q^2 )=448\),解得\(q=\dfrac{1}{2}\).
    \(\therefore a_n=256 \times\left(\dfrac{1}{2}\right)^{n-1}=2^{9-n}\).
    \(T_n=2^8 \cdot 2^7 \cdot \ldots \ldots \cdot 2^{9-n}=2^{8+7+\cdots+9-n}=2^{\frac{n(8+9-n)}{2}}=2^{-\left[\left(n-\frac{17}{2}\right)^2 -\frac{289}{4}\right]}\).
    \(\therefore\)当\(n=8\)或\(9\)时,\(T_n\)取得最大值时.
     

【题型3】等比数列解答题

【典题1】 设数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),满足\(2S_n=a_{n+1}-2^{n+1}+1\),且\(a_1\),\(a_2+5\),\(a_3\)成等差数列.
  (1)求\(a_1\),\(a_2\)的值;
  (2)求证:\(\{a_n+2^n \}\)是等比数列.并求数列\(\{a_n \}\)的通项公式;
  (3)求数列\(\{a_n+2^n+2n\}\)的前\(n\)项和.
解析 (1)\(\because a_1\),\(a_2+5\),\(a_3\)成等差数列, \(\therefore a_1+a_3=2(a_2+5)\)①,
\(\because\) 数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),满足\(2S_n=a_{n+1}-2^{n+1}+1\),
当\(n=1\)时,\(2a_1=a_2-3\),②
当\(n=2\)时,\(2(a_1+a_2 )=a_3-7\),③
\(\therefore\)联立①②③解得,\(a_1=1\),\(a_2=5\),\(a_3=19\).
(2)证明:由\(2S_n=a_{n+1}-2^{n+1}+1\),①得\(2S_{n-1}=a_n-2^n+1\),②,
两式相减得\(2a_n=a_{n+1}-a_n-2^n (n⩾2)\),
\(\dfrac{a_{n+1}+2^{n+1}}{a_n+2^n}=\dfrac{3 a_n+2^n+2^{n+1}}{a_n+2^n}=3(n \geqslant 2)\).
\(\because \dfrac{a_2+2^2}{a_1+2}=3\),\(\therefore \{a_n+2^n \}\)是首项为\(3\),公比为\(3\)的等比数列.
\(\therefore a_{n+1}+2^{n+1}=3(a_n+2^n )\),
又\(a_1=1\),\(a_1+2^1=3\),
\(\therefore a_n+2^n=3^n\),即\(a_n=3^n-2^n\).
(3) 由(2)可知\(a_n=3^n-2^n\),设\(b_n=a_n+2^n+2n=3^n+2n\),前\(n\)项和为\(T_n\),
则\(T_n=b_1+b_2+⋯+b_n=(3+3^2+⋯+3^n )+(2+4+⋯+2n)\)
\(=\dfrac{3\left(1-3^n\right)}{1-3}+\dfrac{n(2+2 n)}{2}=\dfrac{3^{n+1}}{2}+n^2+n-\dfrac{3}{2} .\).
 

【典题2】 已知数列\(\{a_n \}\)是各项为正数的等比数列,且\(a_2=4\),\(a_3 a_4 a_5=2^{12}\).数列\(\{b_n\}\)是单调递增的等差数列,且\(b_2 b_3=15\),\(b_1+b_4=8\),
  (1)求数列\(\{a_n \}\)与数列\(\{b_n\}\)的通项公式;
  (2)求数列\(\{a_n b_n\}\)的前\(n\)项和\(T_n\).
解析 (1)设正项等比数列\(\{a_n \}\)的公比为\(q(q>0)\),
由 \(a_3 a_4 a_5=2^{12}\),得\(a_4^3=2^{12}\),得\(a_4=2^4\),
又\(a_2=4\), \(\therefore q^2=\dfrac{a_4}{a_2}=\dfrac{2^4}{4}=4\),则\(q=2\).
\(\therefore a_n=a_2 q^{n-2}=4 \cdot 2^{n-2}=2^n\);
在等差数列\(\{b_n\}\)中,由等差数列的性质可得,\(b_2+b_3=b_1+b_4=8\),
又\(b_2 b_3=15\),且数列\(\{b_n\}\)是单调递增数列,
解得\(b_2=3\),\(b_3=5\),
则公差\(d=b_3-b_2=5-3=2\).
\(\therefore b_n=b_2+(n-2)×2=3+2n-4=2n-1\).
(2)\(\because a_n b_n=(2n-1) 2^n\).
\(\therefore T_n=1\cdot 2^1+3\cdot 2^2+5\cdot 2^3+⋯+(2n-1)\cdot 2^n\),
\(2T_n=1\cdot 2^2+3\cdot 2^3+5\cdot 2^4+⋯+(2n-3)\cdot 2^n+(2n-1)\cdot 2^{n+1}\).
\(\therefore -T_n=2+2(2^2+2^3+⋯+2^n)-(2n-1)\cdot 2^{n+1}\)
\(=2+2 \cdot \dfrac{4\left(1-2^{n-1}\right)}{1-2}-(2 n-1) \cdot 2^{n+1}=-(2 n-3) 2^{n+1}-6\).
\(\therefore T_n=(2n-3)\cdot 2^{n+1}+6\).
 

【巩固练习】

1.已知等比数列\(\{a_n \}\)满足\(a_2 a_3=2a_4=32\).
  (1)求\(\{a_n \}\)的通项公式;
  (2)记\(\{a_n \}\)的前\(n\)项和为\(S_n\),证明:\(n⩾2\)时,\(a_n^2>S_n+5\).
 
 

2.已知数列\(\{a_n \}\)满足\(a_1=3\),\(a_2=5\),且\(2a_{n+2}=3a_{n+1}-a_n\),\(n∈N^*\).
  (1)设\(b_n=a_{n+1}-a_n\),求证:数列\(\{b_n\}\)是等比数列;
  (2)若数列\(\{a_n \}\)满足\(a_n⩽m(n∈N^* )\),求实数\(m\)的取值范围.
 
 

3.设数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),\(a_1=1\),\(S_{n+1}=4a_n+2(n∈N^* )\)
  (1)若\(b_n=a_{n+1}-2a_n\),求\(b_n\);
  (2)若 \(c_n=\dfrac{1}{a_{n+1}-2 a_n}\),求\(\{c_n \}\)的前\(6\)项和\(T_6\);
  (3)若 \(d_n=\dfrac{a_n}{2^n}\) ,求数列\(\{d_n \}\)的通项.
 
 

参考答案

  1. 答案 (1) \(a_n=2^n\) ;(2) 略 .
    解析 (1)解:设等比数列\(\{a_n \}\)的公比为\(q\),
    因为\(a_2 a_3=2a_4=32\),所以\(a_1^2 q^3=2a_1 q^3=32\),
    又等比数列\(\{a_n \}\)中\(a_1\)和\(q\)均不为\(0\),所以\(a_1=q=2\),
    故数列\(\{a_n \}\)的通项公式为\(a_n=a_1\cdot q^{n-1}=2\cdot 2^{n-1}=2^n\).
    (2)证明:由(1)可得\(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=\dfrac{2\left(1-2^n\right)}{1-2}=2^{n+1}-2\),
    因为\(n⩾2\)时,\(2^n>3\),
    所以\(a_n^2-S_n-5=(2^n )^2-2^{n+1}-3=(2^n )^2-2\cdot 2^n-3=(2^n+1)(2^n-3)>0\),
    所以\(n⩾2\)时,\(a_n^2>S_n+5\).

  2. 答案 (1) 略 ;(2)\(\left[7, +∞\right)\).
    解析 (1)证明:由题知,\(2a_{n+2}=3a_{n+1}-a_n\),
    即\(b_{n+1}=\dfrac{1}{2} b_n\),且\(b_1=a_2-a_1=5-3=2\),
    则数列\(\{b_n\}\)是以\(2\)为首项,\(\dfrac{1}{2}\)为公比的等比数列.
    (2)解:由(1)知 \(b_n=a_{n+1}-a_n=\dfrac{1}{2^{n-2}}\) ,
    则当\(n⩾2\)时,
    其前\(n-1\)项和\(S_{n-1}=a_2-a_1+a_3-a_2+⋯+a_n-a_{n-1}\)
    \(=a_n-a_1=\dfrac{2-\dfrac{1}{2^{n-2}}}{1-\dfrac{1}{2}}=4-\dfrac{1}{2^{n-3}}\),
    则\(a_n=7-\left(\dfrac{1}{2}\right)^{n-3}\) ,\(n⩾2\),且\(a_1=3\)也满足通项,
    则由指数函数单调性知,\(a_n=7-\dfrac{1}{2^{n-3}}<7\),
    若满足\(a_n⩽m(n∈N^* )\),则\(m⩾7\),
    即实数\(m\)的取值范围是\([7, +∞)\).

  3. 答案 (1) \(b_n=3\cdot 2^{n-1}\);(2) \(\dfrac{61}{96}\);(3) \(d_n=\dfrac{3 n}{4}-\dfrac{1}{4}\) .
    解析 (1)\(\because a_1=1\),\(S_{n+1}=4a_n+2(n∈N^* )\),
    \(\therefore S_{n+2}=4a_{n+1}+2\),
    \(\therefore a_{n+2}=S_{n+2}-S_{n+1}=4(a_{n+1}-a_n )\),
    \(\therefore a_{n+2}-2a_{n+1}=2(a_{n+1}-a_n )\),即\(b_{n+1}=2b_n\),
    \(\therefore \{b_n \}\)是公比为\(2\)的等比数列,且\(b_1=a_2-2a_1\)
    \(\because a_1=1\),\(a_2+a_1=S_2\),即\(a_2+a_1=4a_1+2\),
    \(\therefore a_2=3a_1+2=5\),\(\therefore b_1=5-2=3\),
    \(\therefore b_n=3\cdot 2^{n-1}\).
    (2) \(c_n=\dfrac{1}{a_{n+1}-2 a_n}=\dfrac{1}{b_n}=\dfrac{1}{3 \cdot 2^{n-1}}\), \(\therefore c_1=\dfrac{1}{3}\),
    \(\therefore c_n=\dfrac{1}{3} \cdot\left(\dfrac{1}{2}\right)^{n-1}\),
    \(\therefore \{c_n \}\)是首项为\(\dfrac{1}{3}\),公比为\(\dfrac{1}{2}\)的等比数列,
    \(\therefore T_6=\dfrac{\dfrac{1}{3}\left[1-\left(\dfrac{1}{2}\right)^6\right]}{1-\dfrac{1}{2}}=\dfrac{2}{3}\left(1-\dfrac{1}{64}\right)=\dfrac{61}{96}\).
    (3) \(\because d_n=\dfrac{a_n}{2^n}\),\(b_n=3\cdot 2^{n-1}\),
    \(\therefore d_{n+1}-d_n=\dfrac{a_{n+1}}{2^{n+1}}-\dfrac{a_n}{2^n}=\dfrac{a_{n+1}-2 a_n}{2^{n+1}}=\dfrac{b_n}{2^{n+1}}=\dfrac{3 \times 3^{n-1}}{2^{n+1}}=\dfrac{3}{4}\),
    \(\therefore \{d_n \}\)是等差数列, \(d_n=\dfrac{3 n}{4}-\dfrac{1}{4}\).
     

分层练习

【A组---基础题】

1.记单调递增的等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(a_2+a_4=10\),\(a_2 a_3 a_4=64\),则( )
 A.\(S_{n+1}-S_n=2^{n+1}\) \(\qquad \qquad\) B.\(a_n=2^n\) \(\qquad \qquad\) C.\(S_n=2^n-1\) \(\qquad \qquad\) D.\(S_n=2^{n-1}-1\)
 

2.设等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),公比为\(q\),且\(S_3\),\(S_9\),\(S_6\)成等差数列,则\(8q^3\)等于( )
 A.\(-2\) \(\qquad \qquad \qquad \qquad\) B.\(-4\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
 

3.设\(S_n\)为等比数列\(\{a_n \}\)的前\(n\)项和,若\(a_n>0\),\(a_1=\dfrac{1}{2}\),\(S_n<2\),则\(\{a_n \}\)的公比的取值范围是( )
 A.\(\left(0,\dfrac{3}{4}\right]\) \(\qquad \qquad \qquad\) B.\(\left(0,\dfrac{2}{3}\right]\) \(\qquad \qquad \qquad\) C.\(\left(0,\dfrac{3}{4}\right)\) \(\qquad \qquad \qquad\) D.\(\left(0,\dfrac{2}{3}\right)\)
 

4.在等比数列\(\{a_n \}\)中,\(a_1=-9\),\(a_5=-1\),记 \(T_n=a_1 a_3 a_5 \ldots a_{2 n-1}(n=1,2, \cdots)\),则数列\(\{T_n \}\)  ( )
 A.有最大项,有最小项 \(\qquad \qquad \qquad \qquad\) B.有最大项,无最小项
 C.无最大项,有最小项 \(\qquad \qquad \qquad \qquad\) D.无最大项,无最小项
 

5.(多选)在公比为\(q\)的等比数列\(\{a_n \}\)中,\(S_n\)是数列\(\{a_n \}\)的前\(n\)项和,若\(a_1=1\),\(a_5=27a_2\),则下列说法正确的是( )
 A.\(q=3\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) B.数列\(\{S_n+2\}\)是等比数列
 C.\(S_5=121\) \(\qquad \qquad \qquad \qquad \qquad \quad\) D.\(2\lg ⁡a_n=\lg ⁡a_{n-2}+\lg ⁡a_{n+2} (n⩾3)\)
 

6.已知等比数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(a_1+a_3=5\),\(S_4=20\),则 \(\dfrac{S_8-2 S_4}{S_6-S_4-S_2}=\)\(\underline{\quad \quad}\).

7.如图,在\(Rt△ABC\)内有一系列的正方形,它们的边长依次为\(a_1\),\(a_2\),\(…\),\(a_n\),\(…\),若\(AB=a\),\(BC=2a\),
则所有正方形的面积的和为\(\underline{\quad \quad}\).
image.png
 

8.已知等比数列\(\{a_n \}\)的公比\(q>0\),且\(a_1=1\),\(4a_3=a_2 a_4\).
  (1)求公比\(q\)和\(a_3\)的值;
  (2)若\(\{a_n \}\)的前\(n\)项和为\(S_n\),求证 \(\dfrac{S_n}{a_n}<2\).
 
 

9.在数列\(\{a_n \}\)中,\(a_1=4\)且对于任意的自然数\(n∈N^+\)都有\(a_{n+1}=2(a_n-n+1)\).
  (1)证明数列\(\{a_n-2n\}\)是等比数列.
  (2)求数列\(\{a_n \}\)的通项公式及前\(n\)项和为\(S_n\).
 
 

10.设数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),\(a_1=3\)且\(a_{n+1}=2S_n+3\),数列\(\{b_n\}\)为等差数列,且公差\(d>0\),\(b_1+b_2+b_3=15\).
  (1)求数列\(\{a_n \}\)的通项公式;
  (2)若\(\dfrac{a_1}{3}+b_1\), \(\dfrac{a_2}{3}+b_2\), \(\dfrac{a_3}{3}+b_3\)成等比数列,求数列\(\{b_n\}\)的前\(n\)项和\(T_n\);
  (3)对第(2)小题的\(T_n\),当\(T_n+16⩾λn\)对任意的\(n∈N^*\)恒成立,求\(λ\)的最大值.
 
 

参考答案

  1. 答案 \(C\)
    解析 \(\because a_2 a_3 a_4=64\),\(\therefore a_3^3=64\),解得\(a_3=4\).
    又\(a_2+a_4=10\), \(\therefore \dfrac{4}{q}+4 q=10\),
    化为\(2q^2-5q+2=0\),解得\(q=2\)或\(\dfrac{1}{2}\).
    \(q=2\)时,\(a_1=1\);\(q=\dfrac{1}{2}\)时,\(a_1=16\).
    又等比数列\(\{a_n \}\)是单调递增,取\(q=2\),\(a_1=1\).
    \(\therefore a_n=2^{n-1}\).
    \(\therefore S_n=\dfrac{2^n-1}{2-1}=2^n-1\),\(S_{n+1}-S_n=2^{n+1}-1-(2^n-1)=2^n\).
    因此只有\(C\)正确.
    故选:\(C\).

  2. 答案 \(B\)
    解析 \(\because S_3\),\(S_9\),\(S_6\)成等差数列,\(\therefore 2S_9=S_3+S_6\),
    \(\therefore (S_9-S_6 )+(S_9-S_3 )=0\),
    即\((a_7+a_8+a_9 )+(a_7+a_8+a_9 )+(a_4+a_5+a_6 )=0\),
    \(\therefore 2q^3 (a_4+a_5+a_6 )+(a_4+a_5+a_6 )=0\),
    \(\because a_4+a_5+a_6=a_4 (1+q+q^2 )≠0\),
    \(\therefore q^3=-\dfrac{1}{2}\), \(\therefore 8q^3=-4\).
    故选:\(B\).

  3. 答案 \(A\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\),则\(q≠1\).
    \(\because a_n>0\),\(a_1=\dfrac{1}{2}\),\(S_n<2\),
    \(\therefore \{a_n \}\)是递减数列,\(\dfrac{1}{2}×q^{n-1}>0\), \(\dfrac{\dfrac{1}{2}\left(1-q^n\right)}{1-q}<2\),
    \(\therefore 1>q>0\)且\(1⩽4-4q\),解得\(0<q⩽\dfrac{3}{4}\).
    综上,\(\{a_n \}\)的公比的取值范围是\(\left(0,\dfrac{3}{4}\right]\).
    故选:\(A\).

  4. 答案 \(A\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\),
    则 \(\dfrac{a_1}{a_1}=q^4=\dfrac{1}{9}\),所以\(q^2=\dfrac{1}{3}\),
    设数列\(\{b_n\}\)为等比数列\(\{a_n \}\)的奇数项\(a_1\),\(a_3\),\(a_5\),…,\(a_{2n-1} (n=1,2,…)\),
    则数列\(\{b_n\}\)是以\(-9\)为首项,\(\dfrac{1}{3}\)为公比的等比数列,
    则\(b_n=-9 \times\left(\dfrac{1}{3}\right)^{n-1}=-\left(\dfrac{1}{3}\right)^{n-3}\),
    所以 \(T_n=a_1 a_3 a_5 \cdots a_{2 n-1}=b_1 b_2 b_3 \cdots b_n\),
    当\(n⩾4\)时,\(|b_n |<1\),当\(1⩽n⩽3\)时,\(|b_n |⩾1\),
    当\(n\)为奇数时,\(T_n<0\),因为\(b_3=-1\),所以\(T_n⩾T_3=-27\),
    当\(n\)为偶数时,\(T_n>0\),因为\(b_3=-1\),所以\(T_n⩽T_2=27\),
    综上所述,数列\(\{T_n \}\)有最大项\(T_2=27\)和最小项\(T_3=-27\).
    故选:\(A\).

  5. 答案 \(ACD\)
    解析 根据题意,依次分析选项:
    对于\(A\),等比数列\(\{a_n \}\)中,\(S_n\)是数列\(\{a_n \}\)的前\(n\)项和,
    若\(a_1=1\),\(a_5=27a_2\),则 \(q^3=\dfrac{a_5}{a_2}=27\),解可得\(q=3\),\(A\)正确;
    对于\(B\),由于\(q=3\),\(a_1=1\),则 \(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=\dfrac{3^n-1}{2}\),
    则 \(S_n+2=\dfrac{3^n+1}{2}\),数列\(\{S_n+2\}\)不是等比数列,\(B\)错误;
    对于\(C\),由于 \(S_n=\dfrac{a_1\left(1-q^n\right)}{1-q}=\dfrac{3^n-1}{2}\),则\(S_5=121\),\(C\)正确;
    对于\(D\),等比数列\(\{a_n \}\)各项都大于\(0\),
    又由等比数列的性质可知,\(a_{n-2}\cdot a_{n+2}=a_n^2\),
    所以\(2\lg ⁡a_n=\lg ⁡a_{n+2}+\lg ⁡a_{n-2}\),\(D\)正确.
    故选:\(ACD\).

  6. 答案 \(10\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\),
    因为\(S_4=a_1+a_2+a_3+a_4=(1+q)(a_1+a_3 )\),所以\(q=3\),
    则\(\dfrac{S_8-2 S_4}{S_6-S_4-S_2}=\dfrac{\left(S_8-S_4\right)-S_4}{\left(S_6-S_2\right)-S_4}\)\(=\dfrac{q^4 S_4-S_4}{q^2 S_4-S_4}=\dfrac{q^4-1}{q^2-1}=q^2+1=10\).

  7. 答案 \(\dfrac{4}{5} a^2\)
    解析 根据题意可知 \(\dfrac{A B}{B C}=\dfrac{1}{2}\),可得 \(a_1=\dfrac{2}{3} a\),
    依次计算\(a_2=\dfrac{2}{3} a_1\),\(a_3=\dfrac{2}{3} a_2\),\(…\)是公比为\(\dfrac{2}{3}\)的等比数列,
    正方形的面积:依次 \(S_1=\dfrac{4}{9} a^2\), \(S_2=\dfrac{4}{9} a_1^2\),\(…\)边长依次为\(a_1\),\(a_2\),…,\(a_n\),
    正方形的面积构成是公比为 \(\dfrac{4}{9}\)的等比数列.
    所有正方形的面积的和\(S_n=\dfrac{S_1}{1-q}=\dfrac{\dfrac{4}{9} a^2}{1-\dfrac{4}{9}}=\dfrac{4}{5} a^2\).
    故答案为:\(\dfrac{4}{5} a^2\)

  8. 答案 (1) \(q=2\),\(a_3=4\);(2) 略 .
    解析 (1)解:\(\because\)等比数列\(\{a_n \}\)的公比\(q>0\),且\(a_1=1\),\(4a_3=a_2 a_4\).
    \(\therefore 4q^2=q^4\),解得\(q=2\),\(\therefore a_3=4\).
    (2)证明:\(a_n=2^{n-1}\), \(S_n=\dfrac{2^n-1}{2-1}=2^n-1\),
    \(\therefore \dfrac{s_n}{a_n}-2=\dfrac{2^n-1}{2^{n-1}}-2=2-\dfrac{1}{2^{n-1}}-2<0\),
    \(\therefore \dfrac{S_n}{a_n}<2\).

  9. 答案 (1)略;(2)\(S_n=2^{n+1}-2+n^2+n\) .
    解析 (1)\(\because a_{n+1}=2(a_n-n+1)\)
    \(\therefore \dfrac{a_{n+1}-2(n+1)}{a_n-2 n}=\dfrac{2\left(a_n-n+1\right)-2(n+1)}{a_n-2 n}=\dfrac{2\left(a_n-2 n\right)}{a_n-2 n}=2\),
    \(\therefore\)数列\(\{a_n-2n\}\)是以\(a_1-2=2\)为首项,以\(2\)为公比的等比数列
    (2)由(1)可得\(a_n-2n=2\cdot 2^{n-1}=2^n\)
    \(\therefore a_n=2^n+2n\),
    \(\therefore S_n=\dfrac{2-2^{n+1}}{1-2}+\dfrac{(2+2 n) n}{2}=2^{n+1}-2+n^2+n\).

  10. 答案 (1) \(a_n=3^n\) ;(2) \(T_n=n^2+2n\) ;(3) \(10\).
    解析 (1)由\(a_{n+1}=2S_n+3\),得\(a_n=2S_{n-1}+3(n⩾2)\)
    相减得:\(a_{n+1}-a_n=2(S_n-S_{n-1} )\),即\(a_{n+1}=3a_n\),
    \(\because\)当\(n=1\)时,\(a_2=2a_1+3=9\), \(\therefore \dfrac{a_2}{a_1}=3\),
    \(\therefore\)数列\(\{a_n \}\)是等比数列,
    \(\therefore a_n=3\cdot 3^{n-1}=3^n\).
    (2)\(\because b_1+b_2+b_3=15\),\(b_1+b_3=2b_2\), \(\therefore b_2=5\)
    由题意,\(\dfrac{a_1}{3}+b_1\), \(\dfrac{a_2}{3}+b_2\), \(\dfrac{a_3}{3}+b_3\)成等比数列, \(\therefore\left(\dfrac{a_2}{3}+b_2\right)^2=\left(\dfrac{a_1}{3}+b_1\right)\left(\dfrac{a_3}{3}+b_3\right)\),
    设\(b_1=5-d\),\(b_3=5+d\),\(\therefore 64=(5-d+1)(5+d+9)\),
    \(\therefore d^2+8d-20=0\),得\(d=2\)或\(d=-10\)(舍去)
    故\(T_n=3 n+\dfrac{n(n-1)}{2} \cdot 2=n^2+2 n\).
    (3)由题意, \(\lambda \leqslant n+\dfrac{16}{n}+2\),
    \(\because n+\dfrac{16}{n} \geqslant 2 \sqrt{n \cdot \dfrac{16}{n}}=8\),
    \(\therefore λ\)的最大值为\(8+2=10\).
     

【B组---提高题】

1.首项为\(729\)的等比数列\(\{a_n \}\)满足 \(a_n=3^{b_n}\),记数列\(\{b_n\}\)的前\(n\)项和为\(S_n\),若\(∀n∈N^*\),当\(n≠4\)时,\(S_n<S_4\),则数列\(\{a_n \}\)的公比\(q\)的取值范围为( )
 A. \(\left(\dfrac{1}{9}, \dfrac{\sqrt{3}}{9}\right)\) \(\qquad \qquad\)B. \(\left(\dfrac{1}{3}, \dfrac{\sqrt{3}}{3}\right)\) \(\qquad \qquad\) C. \(\left(\dfrac{1}{9}, \dfrac{\sqrt{3}}{3}\right)\) \(\qquad \qquad\) D. \(\left(\dfrac{1}{9}, \dfrac{1}{3}\right)\)
 

2.(多选)已知数列\(\{a_n \}\)满足\(a_1=1\), \(a_{n+1}=\lg \left(10^{a_n}+9\right)+1\),其前\(n\)项和为\(S_n\),则下列结论中正确的有( )
 A.\(\{a_n \}\)是递增数列 \(\qquad \qquad \qquad \qquad \qquad\) B.\(\{a_n+10\}\)是等比数列
 C.\(2a_{n+1}>a_n+a_{n+2}\) \(\qquad \qquad \qquad \qquad\)D.\(S_n<\dfrac{n(n+3)}{2}\)
 

3.已知等比数列\(\{a_n \}\)的首项为\(\dfrac{3}{2}\),公比为\(-\dfrac{1}{2}\),前\(n\)项和为\(S_n\),且对任意的\(n∈N^*\),都有 \(A \leqslant 2 S_n-\dfrac{1}{S_n} \leqslant B\)恒成立,则\(B-A\)的最小值为\(\underline{\quad \quad}\).
 

4.已知数列\(\{a_n \}\)是等差数列,其前\(n\)项和为\(A_n\),\(a_7=15\),\(A_7=63\);数列\(\{b_n\}\)的前\(n\)项和为\(B_n\),\(2B_n=3b_n-3(n∈N^* )\).
  (1)求数列\(\{a_n \}\),\(\{b_n\}\)的通项公式;
  (2)求数列\(\left\{\dfrac{1}{A_n}\right\}\)的前\(n\)项和为\(S_n\);
  (3)求证: \(\sum_{k=1}^n \dfrac{a_k}{B_k}<2\).
 
 

参考答案

  1. 答案 \(A\)
    解析 等比数列\(\{a_n \}\)的公比为\(q\),因为\(a_n=3^{b_n}\),所以\(q>0\),
    则当\(n⩾2\)时, \(\dfrac{a_n}{a_{n-1}}=\dfrac{3^{b_n}}{3^{b_{n-1}}}=3^{b_n-b_{n-1}}=q\),
    所以 \(b_n-b_{n-1}=\log _3 q\),又 \(729=3^6=3^{b_1}\),即\(b_1=6\),
    所以数列\(\{b_n\}\)是以\(6\)为首项,以\(\log_3⁡q\)为公差的等差数列,
    等差数列\(\{b_n\}\)前\(n\)项和\(S_n\)中,\(S_4\)是唯一的最大值,
    则\(\left\{\begin{array}{l} b_4>0 \\ b_5<0 \end{array}\right.\),即\(\begin{cases}6+3 \log _3 & q>0 \\ 6+4 \log _3 & q<0\end{cases}\),解得\(\dfrac{1}{9}<q<\dfrac{\sqrt{3}}{9}\),
    故选:\(A\).

  2. 答案 \(ACD\)
    解析 因为 \(a_{n+1}=\lg \left(10^{a_n}+9\right)+1\),所以 \(10^{a_{n+1}}=10\left(10^{a_n}+9\right)\),
    所以 \(10^{a_{n+1}}+10=10\left(10^{a_n}+10\right)\),
    令 \(b_n=10^{a_n}+10\),则\(b_{n+1}=10b_n\),
    即\(\{b_n\}\)是以\(10\)为公比的等比数列,\(b_1=20\),
    故\(b_n=2×10^n\),
    所以\(a_n=\lg ⁡(2×10^n-10)\)是递增数列,但不是等比数列,\(A\)正确,\(B\)错误;
    因为\(2a_{n+1}=\lg ⁡(4×10^{2n+2}+100-40×10^{n+1} )\),
    \(a_n+a_{n+2}=\lg ⁡(2×10^n-10)(20×10^n-10)\)
    \(=\lg ⁡\left[4×10^{2n+2}+100-20(10^n+10^{n+2} )\right]\),
    又 \(10^n+10^{n+2}>2 \sqrt{10^{2 n+2}}=2 \times 10^{n+1}\),
    所以\(a_n+a_{n+2}<2a_{n+1}\),\(C\)正确;
    令\(c_n=n+1\),则其前\(n\)项和为 \(\dfrac{n(n+3)}{2}\),
    而\(a_n=\lg ⁡(2×10^n-10)<\lg ⁡(2×10^n )<\lg ⁡(10×10^n )=n+1=c_n\),
    故 \(S_n<\dfrac{n(n+3)}{2}\),\(D\)正确.
    故选:\(ACD\).

  3. 答案 \(\dfrac{13}{6}\)
    解析 \(S_n=\dfrac{\dfrac{3}{2}\left[1-\left(-\dfrac{1}{2}\right)^n\right]}{1-\left(-\dfrac{1}{2}\right)}=1-\left(-\dfrac{1}{2}\right)^n\).
    \(2 S_n-\dfrac{1}{S_n}=2\left[1-\left(-\dfrac{1}{2}\right)^n\right]-\dfrac{1}{1-\left(-\dfrac{1}{2}\right)^n}\).
    \(n=2k(k∈N^* )\)时, \(2 S_n-\dfrac{1}{S_n}=2\left[1-\left(\dfrac{1}{2}\right)^n\right]-\dfrac{1}{1-\left(\dfrac{1}{2}\right)^n}\),关于\(n\)单调递增,
    \(n=2\)时,取得最小值 \(2 S_2-\dfrac{1}{S_2}=\dfrac{1}{6}\); \(n\rightarrow+\infty\)时, \(2 S_n-\dfrac{1}{S_n} \rightarrow 1\).
    \(n=2k-1(k∈N^* )\)时, \(2 S_n-\dfrac{1}{S_n}=2\left[1+\left(\dfrac{1}{2}\right)^n\right]-\dfrac{1}{1+\left(\dfrac{1}{2}\right)^n}\),关于\(n\)单调递减,\(n=1\)时,取得最大值 \(2 S_1-\dfrac{1}{S_1}=\dfrac{7}{3}\);
    \(n\rightarrow+\infty\)时, \(2 S_n-\dfrac{1}{S_n} \rightarrow 1\).
    对任意的\(n∈N^*\),都有 \(A \leqslant 2 S_n-\dfrac{1}{S_n} \leqslant B\)恒成立,
    则\(B-A\)的最小值为 \(\dfrac{7}{3}-\dfrac{1}{6}=\dfrac{13}{6}\).
    答案 为: \(\dfrac{13}{6}\).

  4. 答案 (1)\(a_n=2n+1\),\(b_n=3^n\) ;(2) \(S_n=\dfrac{3}{4}-\dfrac{2 n+3}{2(n+1)(n+2)}\) ;(3)略 .
    解析 (1)\(\because\)数列\(\{a_n \}\)是等差数列,其前n项和为\(A_n\),\(a_7=15\),\(A_7=63\),
    \(\therefore\left\{\begin{array}{l} a_7=a_1+6 d=15 \\ A_7=7 a_1+\dfrac{7 \times 6}{2} d=63 \end{array} \right.\),解得\(a_1=3\),\(d=2\),
    \(\therefore\) 数列\(\{a_n \}\)的通项公式为\(a_n=3+{n-1}×2=2n+1\),
    \(\because\)数列\(\{b_n\}\)的前n项和为\(B_n\),\(2B_n=3b_n-3(n∈N^* )\),
    \(\therefore n⩾2\)时,\(2b_n=2(B_n-B_{n-1} )=3b_n-3-(3b_{n-1}-3)\),
    化为\(b_n=3b_{n-1}\),
    \(n=1\),\(2b_1=3b_1-3\),解得\(b_1=3\),
    \(\therefore \{b_n \}\)是以\(3\)为首项,\(3\)为公比的等比数列,
    \(\therefore\)数列\(\{b_n\}\)的通项公式为\(b_n=3^n\);
    (2)\(\because\)数列\(\{a_n \}\)的通项公式为 \(A_n=3 n+\dfrac{n(n-1)}{2} \cdot 2=n^2+2 n\),
    \(\therefore \dfrac{1}{A_n}=\dfrac{1}{n^2+2 n}=\dfrac{1}{n(n+2)}=\dfrac{1}{2}\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\),
    \(\therefore\)数列 \(\left\{\dfrac{1}{A_n}\right\}\)的前 项和 \(S_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+\cdots+\dfrac{1}{n-1}-\dfrac{1}{n+1}+\dfrac{1}{n}-\dfrac{1}{n+2}\right)\),
    即 \(S_n=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}-\dfrac{1}{n+2}\right)=\dfrac{3}{4}-\dfrac{2 n+3}{2(n+1)(n+2)}\);
    (3)证明:\(\because \{b_n \}\)是以\(3\)为首项,\(3\)为公比的等比数列,
    \(\therefore\) 数列\(\{b_n\}\)的前\(n\)项和为 \(B_n=\dfrac{3\left(1-3^n\right)}{1-3}=\dfrac{3}{2}\left(3^n-1\right)\),
    \(\therefore \dfrac{a_k}{B_k}=\dfrac{2}{3} \cdot \dfrac{2 k+1}{3^k-1} \leqslant \dfrac{2}{3} \times \dfrac{2 k+1}{2 \cdot 3^{k-1}}=\dfrac{2 k+1}{3^k}\),
    令\(T_k\)为 \(\left\{\dfrac{2 k+1}{3^k}\right\}\)的前\(k\)项和,则\(T_k=\dfrac{3}{3^1}+\dfrac{5}{3^2}+\cdots+\dfrac{2 k-1}{3^{k-1}}+\dfrac{2 k+1}{3^k}\),
    两式相减得\(\dfrac{2}{3} T_k=1+2\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\cdots+\dfrac{1}{3^k}\right)-\dfrac{2 k+1}{3^{k+1}}\)
    \(=1+2 \times \dfrac{\dfrac{1}{9}\left(1-\dfrac{1}{3^{k-1}}\right)}{1-\dfrac{1}{3}}-\dfrac{2 k+1}{3^{k+1}}=\dfrac{4}{3}-\dfrac{2 k+4}{3^{k+1}}\),
    所以 \(T_k=2-\dfrac{k+2}{3^k}\),
    故 \(\sum_{k=1}^n \dfrac{a_k}{B_k} \leqslant T_k=2-\dfrac{n+2}{3^n}<2\).
     

【C组---拓展题】

1.抛物线\(y^2=4px(p>0)\)的准线与\(x\)轴的交点为\(M\),过点\(M\)作直线交抛物线于\(A\),\(B\)两点.
  (1)求线段\(AB\)中点的轨迹方程;
  (2)若\(p=\dfrac{1}{2}\),线段\(AB\)的垂直平分线交对称轴于点\(N(x_N,0)\),求证:\(x_N>\dfrac{3}{2}\);
  (3)若\(p=\dfrac{1}{2}\),直线\(l\)的斜率依次取\(\dfrac{1}{2}\),\(\left(\dfrac{1}{2}\right)^2\),\(…\), \(\left(\dfrac{1}{2}\right)^n\)时,线段\(AB\)的垂直平分线与抛物线对称轴的交点依次是\(N_1\),\(N_2\),…,\(N_n\),求\(S=\dfrac{1}{\left|N_1 N_2\right|}+\dfrac{1}{\left|N_2 N_3\right|}+\cdots+\dfrac{1}{\left|N_n N_{n+1}\right|}\).
 
 

参考答案

  1. 答案 (1) \(y^2=2px+2p^2,(p>0,x>0)\);(2)略;(3)\(\dfrac{1}{9}\left(1-\dfrac{1}{4^n}\right)\).
    解析 (1)抛物线的准线方程为\(x=-p\),\(\therefore M(-p,0)\),
    设\(l\)方程为\(y=k(x+p)(k≠0)\),\(A(x_1,y_1 )\),\(B(x_2,y_2 )\),\(AB\)中点\(P(x_0,y_0)\),
    由\(\left\{\begin{array}{c} y=k(x+p) \\ y^2=4 p x \end{array}\right.\)得\(k^2 x^2+(2pk^2-4p)x+k^2 p^2=0 \quad (*)\),
    则\(x_1+x_2=\dfrac{4 p-2 p k^2}{k^2}\), \(\therefore x_0=\dfrac{x_1+x_2}{2}=\dfrac{2 p}{k^2}-p\) ①,
    又\(y_0=k\left(x_0+p\right)=\dfrac{2 p}{k}\) ②,
    由①,②消\(k\)后得\(y_0^2=2px_0+2p^2,(p>0,x_0>0)\),
    即\(AB\)中点\(P\)轨迹方程为\(y^2=2px+2p^2,(p>0,x>0)\).
    (2)证明:设\(AB\)中点\(P(x_0,y_0)\),由(1)可知 \(x_0=\dfrac{2 p}{k^2}-p=\dfrac{1}{k^2}-\dfrac{1}{2}\),
    又 \(y_0=k\left(x_0+p\right)=k\left(\dfrac{1}{k^2}-\dfrac{1}{2}+\dfrac{1}{2}\right)=\dfrac{1}{k}\),
    \(\therefore P\left(\dfrac{1}{k^2}-\dfrac{1}{2}, \dfrac{1}{k}\right)\)
    则线段\(AB\)的垂直平分线方程为\(y-\dfrac{1}{k}=-\dfrac{1}{k}\left[\chi-\left(\dfrac{1}{k^2}-\dfrac{1}{2}\right)\right]\),
    令\(y=0\), \(x_N=\dfrac{1}{k^2}+\dfrac{1}{2}\),
    由(1)中的方程(*),可知\(\Delta=\left(2 p k^2-4 p\right)^2-4 k^4 p^2=16 p^2-16 p k^2>0\),
    \(\therefore 0<k^2<1\), \(\therefore \dfrac{1}{k^2}+\dfrac{1}{2}>\dfrac{3}{2}\),则 \(x_N>\dfrac{3}{2}\).
    (3)设\(N_n (x_n,0)\),
    当直线\(l\)的斜率 \(k_n=\left(\dfrac{1}{2}\right)^n\)时,由(2)可知 \(x_n=\dfrac{1}{k_n^2}+\dfrac{1}{2}=4^n+\dfrac{1}{2}\),
    \(\because\left|N_n N_{n+1}\right|=\left|x_{n+1}-x_n\right|=\left|4^{n+1}+\dfrac{1}{2}-\left(4^n+\dfrac{1}{2}\right)\right|=3 \cdot 4^n\),
    \(\therefore \dfrac{1}{\left|N_n N_{n+1}\right|}=\dfrac{1}{3} \cdot\left(\dfrac{1}{4}\right)^n\),
    \(\therefore \dfrac{1}{\left|N_n N_{n+1}\right|}\)是以\(\dfrac{1}{12}\)为首项,以\(\dfrac{1}{4}\)为公比的等比数列,
    \(S=\dfrac{1}{\left|N_1 N_2\right|}+\dfrac{1}{\left|N_2 N_3\right|}+\cdots+\dfrac{1}{\left|N_n N_{n+1}\right|}=\dfrac{\dfrac{1}{12}\left(1-\left(\dfrac{1}{4}\right)^n\right)}{1-\dfrac{1}{4}}=\dfrac{1}{9}\left(1-\dfrac{1}{4^n}\right)\).
     

标签:right,等比数列,4.3,dfrac,therefore,应用,qquad,left
From: https://www.cnblogs.com/zhgmaths/p/16953394.html

相关文章

  • 4.3.2 等比数列的前n项和公式
    \({\color{Red}{欢迎到学科网下载资料学习}}\)[【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)](https://www.zxxk.com/docpack/2875423.html)\({\col......
  • 4.3.1 等比数列的概念2(性质运用)
    \({\color{Red}{欢迎到学科网下载资料学习}}\)[【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)](https://www.zxxk.com/docpack/2875423.html)\({\col......
  • LAMP平台部署及应用
    LAMP平台部署及应用......
  • 4.3.1 等比数列的概念1(概念、通项公式)
    \({\color{Red}{欢迎到学科网下载资料学习}}\)[【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)](https://www.zxxk.com/docpack/2875423.html)\({\col......
  • PaaS平台架构的两大应用类型
    在开发应用时,通常会把这些应用中共有的部分或者需要使用到的功能抽离出来作为基础服务,以供编写和运行从而降低应用创建和运维的复杂性。这一系列应用所要用到的基本功能即为......
  • 4.2.2 等差数列的综合应用
    \({\color{Red}{欢迎到学科网下载资料学习}}\)[【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)](https://www.zxxk.com/docpack/2875423.html)\({\col......
  • PaaS平台架构的两大应用类型
     在开发应用时,通常会把这些应用中共有的部分或者需要使用到的功能抽离出来作为基础服务,以供编写和运行从而降低应用创建和运维的复杂性。这一系列应用所要用到的基本功能......
  • 关于RSA数据加密协议在.Net中的应用
    加密协议有哪些加密协议分为对称加密和非对称加密。对称加密就是将信息使用一个密钥进行加密,解密时使用同样的密钥,同样的算法进行解密。非对称加密,又称公开密钥加密,是加......
  • net core应用在linux中差异记录
    window平台和linux平台部署应用,运行表现可能会存在差异,遇到就随手记录下,欢迎补充:序号差异解决1发布镜像存在时区问题使用release模式发布,并设置时区2应用......
  • 安科瑞消防系统在学校的应用
    安科瑞陈盼应用场景功能1. 电气火灾监控系统是用于接收剩余电流式电气火灾监控探测器等现场设备信号,以实现对被保护电气线路的报警、监视、控制、管理的运行于计算机的工业......