首页 > 其他分享 >4.2.2 等差数列的综合应用

4.2.2 等差数列的综合应用

时间:2022-12-05 18:22:06浏览次数:61  
标签:right 4.2 dfrac therefore 应用 qquad 等差数列 left

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

定义

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,记为\(d\) .
 

等差中项

若\(a\),\(b\),\(c\)成等差数列,则\(b\)称\(a\)与\(c\)的等差中项,则 \(b=\dfrac{a+c}{2}\).
 

通项公式

等差数列\(\{a_n \}\)的首项为\(a_1\),公差为\(d\),则\(a_n=a_1+(n-1) d\). (由定义与累加法可得)
 

前n项和

等差数列\(\{a_n \}\)的首项为\(a_1\),公差为\(d\),则其前\(n\)项和为
\(S_n=\dfrac{\left(a_1+a_n\right) n}{2}\) (由倒序相加法可证) \(S_n=n a_1+\dfrac{n(n-1)}{2} d\)
 

证明一个数列是等差数列的方法

① 定义法: \(a_{n+1}-a_n=d\)\((d\)是常数,\(n∈N^*)⟹a_n\)是等差数列;
② 中项法: \(2a_{n+1}=a_n+a_{n+2} (n∈N^*)⟹a_n\)是等差数列;
③ 通项公式法:\(a_n=kn+b\) \((k ,b\)是常数\() ⟹a_n\)是等差数列;
④ 前n项和公式法:\(S_n=A n^2+Bn\)\((A ,B\)是常数\() ⟹a_n\)是等差数列;
方法③④不可以在解答题里直接使用.
 

基本性质(其中m ,n ,p ,t∈N^*)

若数列\(\{a_n \}\)是首项为\(a_1\),公差为\(d\)的等差数列,它具有以下性质:
(1) 若\(m+n=p+t\), 则\(a_m+a_n=a_p+a_t\);
(2)\(a_n=a_m+(n-m) d\);
(3) \(d=\dfrac{a_n-a_m}{n-m}\);
(4) 下标成等差数列且公差为\(m\)的项\(a_k\),\(a_{k+m}\) , \(a_{k+2 m}\) ,\(…\)\((k ,m∈N^*)\)组成公差为\(md\)的等差数列;
(5) 数列\(\{λa_n+b\}(λ、b\)是常数\()\)是公差是\(λb\)的等差数列;
(6) 若数列\(\{b_n \}\)也是等差数列,则数列\(\{a_n±b_n \}\),\(\{ka_n±b_n \}\)\((k\)为非零常数\()\)也是等差数列;
(7) \(S_n\) , \(S_{2 n}-S_n\), \(S_{3 n}-S_{2 n}\)\(…\)\((n∈N^*)\)成等差数列;
(8) \(S_{2 n-1}=(2 n-1) a_n\).
 

基本方法

【题型1】 等差数列的基本运算

【典题1】 等差数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),已知\(a_1+2a_3=-1\),\(S_4=0\).则\(S_n\)的最小值为(  )
 A. \(-4\) \(\qquad \qquad \qquad \qquad\) B.\(-3\) \(\qquad \qquad \qquad \qquad\) C. \(-2\) \(\qquad \qquad \qquad \qquad\) D.\(-1\)
解析 设等差数列\(\{a_n \}\)的公差为\(d\),
\(\because a_1+2a_3=-1\),\(S_4=0\),
\(\therefore\left\{\begin{array}{l} 3 a_1+4 d=-1 \\ 4 a_1+6 d=0 \end{array}\right.\),解得\(a_1=-3\),\(d=2\),
故\(a_n=-3+(n-1)×2=2n-5\),
当\(n=2\)时,\(a_2=-1<0\),当\(n=3\)时,\(a_3=1\),
故\(S_n\)的最小值为\(S_2=a_1+a_2=-3+(-1)=-4\).
故选:\(A\).
 

【巩固练习】

1.已知数列\(\{a_n \}\)是等差数列,其前\(n\)项和为\(S_n\),且\(a_1=1\),\(S_8=4S_4\),若\(a_k+a_3=18\),则\(k\)的值为(  )
 A. \(6\) \(\qquad \qquad \qquad \qquad\) B. \(7\) \(\qquad \qquad \qquad \qquad\) C. \(8\) \(\qquad \qquad \qquad \qquad\) D.\(9\)
 

2.设等差数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),\(S_{35}<0\),\(S_{36}>0\).若对任意的正整数\(n\),都有\(S_n≥S_k\),则整数\(k=\)(  )
 A. \(34\) \(\qquad \qquad \qquad \qquad\) B. \(35\) \(\qquad \qquad \qquad \qquad\) C. \(18\) \(\qquad \qquad \qquad \qquad\) D.\(19\)
 

参考答案

  1. 答案 \(B\)
    解析 在等差数列\(\{a_n \}\)中,设公差为\(d\),
    由\(a_1=1\),\(S_8=4S_4\),得\(8 \times 1+\dfrac{8 \times 7}{2} d=4\left(4 \times 1+\dfrac{4 \times 3}{2} d\right)\),
    解得\(d=2\).
    若\(a_k+a_3=18\),则\(1+2(k-1)+1+2×2=18\),解得\(k=7\).
    故选:\(B\).

  2. 答案 \(C\)
    解析 在等差数列\(\{a_n \}\)中,由\(S_{35}<0\),\(S_{36}>0\),
    得 \(\left\{\begin{array}{l} \dfrac{\left(a_1+a_{35}\right) \times 35}{2}<0 \\ \dfrac{\left(a_1+a_{36}\right) \times 36}{2}>0 \end{array}\right.\),则 \(\left\{\begin{array}{l} a_{18}<0 \\ a_{18}+a_{19}>0 \end{array}\right.\),
    可得 \(a_{18}<0\), \(a_{19}>0\),且 \(a_{19}>\left|a_{18}\right|\),
    若对任意的正整数\(n\),都有\(S_n≥S_k\),则\(k=18\).
    故选:\(C\).
     

【题型2】 等差数列的基本性质及运用

【典题1】 等差数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),若\(S_5<S_6\),\(S_6=S_7\),\(S_7>S_8\),则下列结论错误的是(  )
 A. \(a_6+a_8=0\) \(\qquad \qquad \qquad \qquad\) B. \(S_5=S_8\) \(\qquad \qquad \qquad \qquad\) C. 数列\(\{a_n \}\)是递减数列 \(\qquad \qquad \qquad \qquad\) D.\(S_{13}>0\)
解析 由\(S_6=S_7\),则 \(\dfrac{6\left(a_1+a_6\right)}{2}=\dfrac{7\left(a_1+a_7\right)}{2}\),即\(a_1+6d=a_7=0\),
又\(S_5<S_6\), \(S_7>S_8\),易知:\(d<0\),
故数列\(\{a_n \}\)是递减数列,故\(C\)正确;
根据\(a_6+a_8=2a_7=0\),\(A\)正确;
\(S_5=\dfrac{5\left(a_1+a_5\right)}{2}=5 a_3\), \(S_8=\dfrac{8\left(a_1+a_8\right)}{2}=\dfrac{8\left(a_2+a_7\right)}{2}=4 a_2\),
则\(5a_3-4a_2=a_1+6d=0\),
故\(S_5=S_8\),故\(B\)正确;
再根据 \(S_{13}=\dfrac{13\left(a_1+a_{13}\right)}{2}=13 a_7=0\),故\(D\)错误,
故选:\(D\).
 

【巩固练习】

1.若\(\{a_n \}\)是等差数列,且\(a_2\),\(a_{2022}\)是方程\(x^2-4x+3=0\)的两个根,则 \(2^{a_1} \times 2^{a_2} \times 2^{a_3} \times \ldots \times 2^{a_{2023}}=\)(  )
 A. \(34\) \(\qquad \qquad \qquad \qquad\) B. \(35\) \(\qquad \qquad \qquad \qquad\) C. \(18\) \(\qquad \qquad \qquad \qquad\) D.\(19\)
 

2.已知等差数列\(\{a_n \}\)中,\(a_5\),\(a_{17}\)是方程\(x^2-6x-21=0\)的两根,则\(\{a_n \}\)的前\(21\)项的和为(  )
 A. \(6\) \(\qquad \qquad \qquad \qquad\) B. \(30\) \(\qquad \qquad \qquad \qquad\) C. \(63\) \(\qquad \qquad \qquad \qquad\) D.\(126\)
 

3.已知公差非零的等差数列\(\{a_n \}\)满足\(|a_5 |=|a_8 |\),则下列结论正确的是(  )
 A. \(S_{13}=0\)
 B. 当\(S_{13}>0\)时,\(S_n≥S_6\),\(n∈N^*\)
 C.当\(S_{13}<0\)时, \(S_n≥S_6\),\(n∈N^*\)
 D. \(S_n=S_{13-n}\left(1 \leq n \leq 12, n \in N^*\right)\)
 

4.已知数列\(\{a_n \}\)、\(\{b_n \}\)都是等差数列,设\(\{a_n \}\)的前\(n\)项和为\(S_n\),\(\{b_n \}\)的前\(n\)项和为\(T_n\).若 \(\dfrac{S_n}{T_n}=\dfrac{2 n+1}{3 n+2}\),则 \(\dfrac{a_5}{b_5}=\) (  )
 A. \(\dfrac{19}{29}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{11}{25}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{11}{17}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{2}{3}\)
 

参考答案

  1. 答案 \(C\)
    解析 \(\because a_2\),\(a_{2022}\)是方程\(x^2-4x+3=0\)的两个根,
    \(\therefore a_2+a_{2022}=4\),
    又\(\{a_n \}\)是等差数列,
    \(\therefore a_1+a_{2023}=a_2+a_{2022}=\cdots=2 a_{1012}\),即 \(a_{1012}=2\),
    \(2^{a_1} \times 2^{a_2} \times 2^{a_3} \times \ldots \times 2^{a_{2023}}=2^{\left(a_1+a_2+\cdots+a_{2023}\right)}=2^{(1011 \times 4+2)}=2^{4046}\).
    故选:\(C\).

  2. 答案 \(C\)
    解析 \(\because\) 等差数列\(\{a_n \}\)中,\(a_5\),\(a_{17}\)是方程\(x^2-6x-21=0\)的两根,
    \(\therefore a_5+a_{17}=6\), \(a_5 \cdot a_{17}=-21\),
    故\(\{a_n \}\)的前\(21\)项的和为 \(\dfrac{21 \times\left(a_1+a_{21}\right)}{2}=\dfrac{21 \times\left(a_5+a_{17}\right)}{2}=63\),
    故选:\(C\).

  3. 答案 \(B\)
    解析 \(\because\)公差非零的等差数列\(\{a_n \}\)满足\(|a_5 |=|a_8 |\),
    \(\therefore a_5=-a_8\),即\(a_5+a_8=0\),即\(a_7+a_6=0\).
    \(\therefore S_{12}=\dfrac{12\left(a_1+a_{12}\right)}{2}=6\left(a_5+a_8\right)=0\),故\(A\)不对;
    对于选项\(B\), \(S_{13}=\dfrac{13 \times\left(a_1+a_{13}\right)}{2}=13 a_7>0\)时, \(\therefore a_7>0\), \(\therefore a_6<0\),
    故该数列为递增等差数列,前\(6\)项为负数,从第\(7\)项开始为正数,故\(S_6\)最小,
    即\(S_n≥S_6\),故\(B\)正确;
    对于选项\(C\), \(S_{13}=\dfrac{13 \times\left(a_1+a_{13}\right)}{2}=13 a_7<0\)时, \(\therefore a_7<0\),\(\therefore a_6>0\),
    故该数列为递减等差数列,前\(6\)项为正数,从第\(7\)项开始为负数,故\(S_6\)最大,
    即\(S_n≤S_6\),故\(C\)错误;
    当\(n=1\)时,\(S_n=S_1=a_1\), \(S_{13-n}=S_{12}=\dfrac{12 \times\left(a_1+a_{12}\right)}{2}=6\left(a_7+a_6\right)=0\),
    而\(a_1≠0\),故\(D\)错误,
    故选:\(B\).

  4. 答案 \(A\)
    解析 \(\because S_n\),\(T_n\)分别为等差数列\(\{a_n \}\)、\(\{b_n \}\)的前\(n\)项和, \(\dfrac{S_n}{T_n}=\dfrac{2 n+1}{3 n+2}\),
    \(\therefore \dfrac{a_5}{b_5}=\dfrac{\dfrac{9\left(a_1+a_9\right)}{2}}{\dfrac{9\left(b_1+b_9\right)}{2}}=\dfrac{S_9}{T_9}=\dfrac{2 \times 9+1}{3 \times 9+2}=\dfrac{19}{29}\),
    故选:\(A\).
     

【题型3】等差数列综合

【典题1】 设数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),且 \(\left(S_n-1\right)^2=a_n S_n\).
  (1)求\(a_1\);(2)求证:数列 \(\left\{\dfrac{1}{S_n-1}\right\}\)为等差数列.
解析 (1)解:\(n=1\)时, \(\left(a_1-1\right)^2=a_1^2\),则 \(a_1=\dfrac{1}{2}\);
(2)证明: \(\left(S_n-1\right)^2=a_n S_n\),
则\(n≥2\)时, \(\left(S_n-1\right)^2=\left(S_n-S_{n-1}\right) S_n\).
即有\(-2S_n+1=-S_{n-1} S_n\),
即\(1-S_n=S_n (1-S_{n-1})\),即有 \(\dfrac{1}{S_{n-1}-1}=\dfrac{S_n}{S_n-1}\),
\(\dfrac{1}{S_{n-1}}-\dfrac{1}{S_{n-1}-1}=\dfrac{1}{S_n-1}-\dfrac{S_n}{S_n-1}=-1\)为定值,
则数列 \(\left\{\dfrac{1}{S_n-1}\right\}\)为等差数列.
 

【巩固练习】

1.已知\(\{a_n \}\)是等差数列,\(a_4+a_6=8\),其前\(5\)项和\(S_5=40\).
  (1)求\(\{a_n \}\)的通项\(a_n\);
  (2)求\(\{a_n \}\)前\(n\)项和\(S_n\)的最大值.
 
 

2.流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年\(11\)月份曾发生流感,据资料统计,\(11\)月\(1\)日,该市新的流感病毒感染者有\(20\)人,此后,每天的新感染者平均比前一天的新感染者增加\(50\)人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少\(30\)人,到\(11\)月\(30\)日止,该市在这\(30\)天内感染该病毒的患者总共有\(8 670\)人,则\(11\)月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.
 
 

3.设\(S_n\)是数列\(\{a_n \}\)的前n项和且\(n∈N^*\),所有项\(a_n>0\),且 \(S_n=\dfrac{1}{4} a_n^2+\dfrac{1}{2} a_n-\dfrac{3}{4}\).
  (1)证明:\(\{a_n \}\)是等差数列;(2)求数列\(\{a_n \}\)的通项公式.
 
 

4.已知正项数列\(\{a_n \}\)的首项\(a_1=1\),前\(n\)项和\(S_n\)满足 \(2 a_n=\sqrt{S_n}+\sqrt{S_{n-1}}(n \geq 2)\).
  (1)求数列\(\{a_n \}\)的通项公式;
  (2)记数列 \(\left\{\dfrac{1}{a_n a_{n+1}}\right\}\)的前\(n\)项和为\(T_n\),若对任意的\(n∈N^*\),不等式\(5T_n<a^2-a\)恒成立,求实数\(a\)的取值范围.
 
 

参考答案

  1. 答案 (1) \(a_n=-2n+14\) ;(2) \(42\) .
    解析 (1)由题意可得 \(\left\{\begin{array}{l} a_4+a_6=2 a_1+8 d=8 \\ S_5=5 a_1+10 d=40 \end{array}\right.\),解得\(a_1=12\),\(d=-2\),
    \(\therefore a_n=12-2(n-1)=-2n+14\);
    (2) \(S_n=\dfrac{n(12+14-2 n)}{2}=n(13-n)=-n^2+13 n=-\left(n-\dfrac{13}{2}\right)^2+\dfrac{169}{4}\),
    当\(n=6\)或\(n=7\)时,有最大值,最大值为\(-36+13×6=42\).

  2. 答案 \(11\)月\(12\)日该市感染此病毒的新患者人数最多,且这一天患者人数为\(570\).
    解析 设\(11\)月\(1\)日,该市第\(n\)日\((n∈N^*,1≤n≤30)\)感染此病毒的新患者人数最多.
    则从\(11\)月\(1\)日至第\(n\)日,每日感染此病毒的新患者人数构成一个等差数列,其首项为\(20\),公差为\(50\).
    前\(n\)日患者总人数\(S_n=20 n+\dfrac{n(n-1)}{2} \times 50=25 n^2-5 n\).
    从第\(n+1\)日开始至\(11\)月\(30\)日止,每日感染此病毒的新患者人数依次构成另一个等差数列.
    其首项为\(20+(n-1)×50-30=50n-60\),公差为\(-30\).项数为\((30-n)\),
    其患者总人数为 \(T_{30-n}=(30-n)(50 n-60)+\dfrac{(30-n)(29-n)}{2} \times(-30)\).
    由题意可得 \(S_n+T_{30-n}=8670\),即\(\left(25 n^2-5 n\right)+\left(-65 n^2+2445 n-14850\right)=8670\).
    化为\(n^2-61n+588=0\),解得\(n=12(1≤n≤30)\).
    \(\therefore n=12\),第\(12\)日的新患者人数为\(20+(12-1)×50=570\).
    \(\therefore\) \(11\)月\(12\)日该市感染此病毒的新患者人数最多,且这一天患者人数为\(570\).

  3. 答案 (1) 略;(2) \(a_n=2n+1\).
    解析 (1)因为 \(S_n=\dfrac{1}{4} a_n^2+\dfrac{1}{2} a_n-\dfrac{3}{4}\).
    所以\(4S_n=a_n^2+2a_n-3\),\(4S_{n+1}=a_{n+1}^2+2a_{n+1}-3\),
    两式相减整理可得\((a_{n+1}+a_n)( a_{n+1}-a_n-2)=0\),
    \(\because a_n>0\),
    \(\therefore a_{n+1}-a_n-2=0\),
    \(\therefore a_{n+1}-a_n=2\),
    \(\{a_n \}\)成等差数列;
    (2)由(1)可知数列\(\{a_n \}\)是等差数列,并且\(4S_1=a_1^2+2a_1-3\),
    所以\(a_1=3\)或\(-1\)(舍去),公差为\(2\),
    所以\(a_n=2n+1\).

  4. 答案 (1) \(a_n=\left\{\begin{array}{l} \dfrac{2 n+1}{4}, n \geq 2 \\ 1, n=1 \end{array}\right.\);(2)\(a≤-3\)或\(a≥4\).
    解析 (1)当\(n≥2\)时, \(2 a_n=\sqrt{S_n}+\sqrt{S_{n-1}}\),
    \(\therefore 2\left(S_n-S_{n-1}\right)=\sqrt{S_n}+\sqrt{S_{n-1}}\),即 \(\sqrt{S_n}-\sqrt{S_{n-1}}=\dfrac{1}{2}\),
    所以数列 \(\left\{\sqrt{S_n}\right\}\)是首项为\(1\),公差为 \(\dfrac{1}{2}\)的等差数列,
    故\(\sqrt{S_n}=\dfrac{n+1}{2}\), \(a_n=\dfrac{1}{2}\left(\sqrt{S_n}+\sqrt{S_{n-1}}\right)=\dfrac{1}{2} \cdot\left(\dfrac{n+1}{2}+\dfrac{n}{2}\right)=\dfrac{2 n+1}{4}(n \geq 2)\),
    因此\(a_n=\left\{\begin{array}{l} \dfrac{2 n+1}{4}, n \geq 2 \\ 1, n=1 \end{array}\right.\).
    (2)当\(n≥2\)时, \(\dfrac{1}{a_n a_{n+1}}=\dfrac{1}{\dfrac{2 n+1}{4} \cdot \dfrac{2 n+3}{4}}=8\left(\dfrac{1}{2 n+1}-\dfrac{1}{2 n+3}\right)\),
    \(\therefore T_n=\dfrac{4}{5}+8\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\cdots+\dfrac{1}{2 n+1}-\dfrac{1}{2 n+3}\right)=\dfrac{12}{5}-\dfrac{8}{2 n+3}<\dfrac{12}{5}\),
    又\(\because 5T_n<a^2-a\),\(\therefore 12≤a^2-a\),解得\(a≤-3\)或\(a≥4\).
    即所求实数\(a\)的范围是\(a≤-3\)或\(a≥4\).
     

分层练习

【A组---基础题】

1.已知数列\(\{a_n \}\)满足\(a_{n+1}-a_n=2\),若\(a_2=4\),则\(a_8=\) (  )
 A.\(14\) \(\qquad \qquad \qquad \qquad\) B.\(16\) \(\qquad \qquad \qquad \qquad\) C.\(18\) \(\qquad \qquad \qquad \qquad\) D.\(20\)
 

2.若数列\(a\),\(x_1\),\(x_2\),\(b\)与\(a\),\(y_1\),\(y_2\),\(y_3\),\(b\)均为等差数列(其中\(a≠b\)),则 \(\dfrac{x_2-x_1}{y_2-y_1}=\)(  )
 A. \(\dfrac{2}{3}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{4}{3}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{3}{4}\)
 

3.记\(S_n\)为等差数列\(\{a_n \}\)的前\(n\)项和,已知\(S_4=0\),\(a_5=5\),则(  )
 A. \(na_n<2S_n\) \(\qquad \qquad \qquad \qquad\) B. \(na_n=2S_n\) \(\qquad \qquad \qquad \qquad\) C.\(na_n>2S_n\) \(\qquad \qquad \qquad \qquad\) D.\(2na_n=S_n\)
 

4.我国古代数学著作《九章算术》中有如下问题:“今有善走男,日增等里,首日行走一百里,九日共行一千二百六十里,问日增几何?”,该问题中,善走男第\(5\)日所走的路程里数是(  ).
 A. \(110\) \(\qquad \qquad \qquad \qquad\) B. \(120\) \(\qquad \qquad \qquad \qquad\) C. \(130\) \(\qquad \qquad \qquad \qquad\) D.\(140\)
 

5.已知正项等差数列\(\{a_n \}\)的前\(n\)项和\(S_n\),\(S_9=45\),则\(a_2⋅a_8\)的最大值是 .
 A. \(40\) \(\qquad \qquad \qquad \qquad\) B. \(50\) \(\qquad \qquad \qquad \qquad\) C.\(80\) \(\qquad \qquad \qquad \qquad\) D.\(25\)
 

6.在等差数列\(\{a_n \}\)中,前\(n\)项和\(S_n\),且 \(\dfrac{S_8}{S_4}=3\),则 \(\dfrac{S_{12}}{S_8}=\)\(\underline{\quad \quad}\).
 

7.设\(S_n\)是等差数列\(\{a_n \}\)的前\(n\)项和,存在\(\therefore n∈N^*\)且\(n>4\)时有\(S_8=20\), \(S_{2 n-1}-S_{2 n-9}=116\),则\(a_n=\)\(\underline{\quad \quad}\).
 

8.设等差数列\(\{a_n \}\)满足:\(a_1=3\),公差\(d∈(0,10)\),其前\(n\)项和为\(S_n\).若数列 \(\left\{\sqrt{S_n+1}\right\}\)也是等差数列,则 \(\dfrac{S_n+10}{a_n+1}\)的最小值为\(\underline{\quad \quad}\).
 

9.设数列\(\{a_n \}\)满足: \(a_1=\dfrac{1}{2}\), \(a_{n+1}-a_n=2\left(a_{n+1}-1\right)\left(a_n-1\right)\),证明数列 \(\left\{\dfrac{1}{a_n-1}\right\}\)是等差数列并求数列\(\{a_n \}\)的通项公式\(a_n\).
 

10.数列\(\{a_n \}\)的首项\(a_1=-20\),\(a_n+a_{n+1}=3n-54\),\(n∈N^*\),
  (1)求数列\(\{a_n \}\)的通项公式;
  (2)设\(\{a_n \}\)的前\(n\)项和为\(S_n\),求\(S_n\)的最小值.
 
 

11.已知数列\(\{a_n \}\)的前n项和 \(S_n=4-a_n-\dfrac{1}{2^{n-2}}\) .
  (1)证明:数列\(\{2^n a_n\}\)是等差数列;(2)求\(\{a_n \}\)的通项公式.
 
 

参考答案

  1. 答案 \(B\)
    解析 \(\because\)数列\(\{a_n \}\)满足\(a_{n+1}-a_n=2\), \(\therefore\)数列\(\{a_n \}\)是等差数列,公差为\(2\),
    \(\because a_2=4\),\(\therefore a_8=a_2+(8-2)×2=4+12=16\),
    故选:\(B\).

  2. 答案 \(B\)
    解析 设数列\(a\),\(x_1\),\(x_2\),\(b\)的公差为\(d_1\),数列\(a\),\(y_1\),\(y_2\),\(y_3\),\(b\)的公差为\(d_2\),
    则有\(3d_1=b-a\),即 \(d_1=\dfrac{b-a}{3}\),且\(4d_2=b-a\),即 \(d_2=\dfrac{b-a}{4}\),
    \(\therefore \dfrac{x_2-x_1}{y_2-y_1}=\dfrac{d_1}{d_2}=\dfrac{\dfrac{b-a}{3}}{\dfrac{b-a}{4}}=\dfrac{4}{3}\),故选:\(B\).

  3. 答案 \(C\)
    解析 设等差数列\(\{a_n \}\)的首项为\(a_1\),公差为\(d\),
    由\(S_4=0\),\(a_5=5\),得 \(\left\{\begin{array}{l} 4 a_1+\dfrac{4 \times 3}{2} d=0 \\ a_1+4 d=5 \end{array}\right.\),解得\(a_1=-3\),\(d=2\).
    \(\therefore a_n=-3+2 (n-1)=2n-5\), \(S_n=-3 n+\dfrac{n(n-1)}{2} \times 2=n^2-4 n\),
    则\(na_n-2S_n=2n^2-5n-2n^2+8n=3n>0\),\(\therefore na_n>2S_n\),
    \(2na_n=4n^2-10n≠S_n\).
    故选:\(C\).

  4. 答案 \(D\)
    解析 \(\because\)今有善走男,日增等里,首日行走一百里,九日共行一千二百六十里,
    设善走男每天走的路程为\(\{a_n \}\),则数列\(\{a_n \}\)为等差数列,设公差为\(d\),则\(a_1=100\),
    \(\therefore\)由题意, \(9 a_1+\dfrac{9 \times 8}{2} \cdot d=1260\),可得\(a_1+4d=140\),
    解得该善走男第\(5\)日所走的路程里数为\(a_5=a_1+4d=140\),
    故选:\(D\).

  5. 答案 \(D\)
    解析 正项等差数列\(\{a_n \}\)的前\(n\)项和\(S_n\),\(S_9=45\),
    则 \(\dfrac{9\left(a_1+a_9\right)}{2}=45\),化为\(a_1+a_9=10=a_2+a_8\).
    则 \(a_2 \cdot a_8 \leq\left(\dfrac{a_2+a_8}{2}\right)^2=25\),当且仅当\(a_2=a_8=5\)时取等号.

  6. 答案 \(2\)
    解析 等差数列\(\{a_n \}\)中,前\(n\)项和\(S_n\),且\(\dfrac{S_8}{S_4}=3\),
    设\(S_4=t\),则\(S_8=3t\),
    \(\therefore S_4\),\(S_8-S_4\),\(S_{12}-S_8\)也是等差数列,
    即\(t\),\(2t\),\(S_{12}-S_8\)成等差数列,
    故有 \(S_{12}-S_8=3t\),故有\(S_{12}=S_8+3t=6t\),
    则 \(\dfrac{S_{12}}{S_8}=\dfrac{6 t}{3 t}=2\).

  7. 答案 \(\dfrac{17}{2}\)
    解析 由题知\(a_1+a_2+⋯+a_8=20\),
    且 \(S_{2 n-1}-S_{2 n-9}=a_{2 n-8}+a_{2 n-7}+\cdots+a_{2 n-1}=116\),
    故\(a_1+a_{2 n-1}=\dfrac{20+116}{8}=17=2 a_n\),
    所以 \(a_n=\dfrac{17}{2}\).

  8. 答案 \(3\)
    解析 由题意可得: \(2 \sqrt{S_2+1}=\sqrt{S_1+1}+\sqrt{S_3+1}\),
    即\(2 \sqrt{7+d}=2+\sqrt{10+3 d}\),公差\(d∈(0,10)\),解得\(d=2\).
    \(\therefore a_n=2n+1\).
    \(\therefore S_n=\dfrac{n(3+2 n+1)}{2}=n^2+2 n\).
    \(\therefore \sqrt{S_n+1}=n+1\).
    \(\therefore\)数列 \(\left\{\sqrt{S_n+1}\right\}\)是等差数列,
    则 \(\dfrac{s_n+10}{a_n+1}=\dfrac{n^2+2 n+10}{2 n+2}=\dfrac{(n+1)^2+9}{2(n+1)}=\dfrac{1}{2}\left[(n+1)+\dfrac{9}{n+1}\right]\)\(\geq \sqrt{(n+1) \cdot \dfrac{9}{n+1}}=3\),
    当且仅当\(n=2\)时取等号,
    \(\therefore \dfrac{S_n+10}{a_n+1}\)的最小值为\(3\).

  9. 答案 证明略, \(a_n=\dfrac{2 n-1}{2 n}\)
    解析 证明:\(\because a_{n+1}-a_n=2(a_{n+1}-1)( a_n-1)\),
    \(\therefore 2(a_{n+1}-1)( a_n-1)=( a_{n+1}-1)-(a_n-1)\),
    上式两边同除以\((a_{n+1}-1)( a_n-1)\) \((\)可验证\((a_{n+1}-1)( a_n-1)≠0)\),
    化简得\(\dfrac{1}{a_{n+1}-1}-\dfrac{1}{a_n-1}=-2\),
    所以\(\left\{\dfrac{1}{a_n-1}\right\}\)是以\(-2\)为首项,\(-2\)为公差的等差数列,
    即\(\dfrac{1}{a_n-1}=-2-2(n-1)=-2 n\),
    即\(a_n=1-\dfrac{1}{2 n}=\dfrac{2 n-1}{2 n}\).

  10. 答案 (1) \(a_n=\left\{\begin{array}{l} \dfrac{3}{2} n-\dfrac{43}{2}, n \text { 为奇数 } \\ \dfrac{3}{2} n-34, n \text { 为偶数 } \end{array}\right.\); (2)\(-243\).
    解析 (1)\(a_1=-20\),\(a_2=-31\),
    又\(a_{n+1}+a_{n+2}=3n-51\),\(a_n+a_{n+1}=3n-54\),
    则\(a_{n+2}-a_n=3\),即奇数项成等差,偶数项成等差,且公差均为\(3\),
    \(\therefore a_n=\left\{\begin{array}{l} \dfrac{3}{2} n-\dfrac{43}{2}, n \text { 为奇数 } \\ \dfrac{3}{2} n-34, n \text { 为偶数 } \end{array}\right.\);
    (2)当\(n\)为偶数,即\(n=2k\)时\(S_n=-51 k+\dfrac{k(k-1)}{2} \times 6=3(k-9)^2-243\),
    \(\therefore S_n≥S_{18}=-243\);
    当\(n\)为奇数,即\(n=2k-1\)时\(S_n=S_{2 k}-a_{2 k}=3\left(k-\dfrac{19}{2}\right)^2-236 \dfrac{3}{4}\),
    \(\therefore S_n \geq S_{17}=S_{19}=-236\),
    \(\therefore\left(S_n\right)_{\min }=S_{18}=-243\).

  11. 答案 (1)略;(2) \(a_n=\dfrac{n}{2^{n-1}}\) .
    解析 证明 (1)\(\because\)数列\(\{a_n \}\)的前\(n\)项和 \(S_n=4-a_n-\dfrac{1}{2^{n-2}}\) .
    \(\therefore\)当\(n=1\)时, \(S_1=4-a_1-\dfrac{1}{2^{-1}}\),解得\(a_1=1\),
    当\(n≥2\)时, \(S_n=4-a_n-\dfrac{1}{2^{n-2}}\), \(S_{n-1}=4-a_{n-1}-\dfrac{1}{2^{n-3}}\) .
    两式相减,得 \(2 a_n=a_{n-1}+\dfrac{4}{2^n}\),
    \(\therefore 2 \times 2^n a_n=2 \times 2^{n-1} a_{n-1}+4\),
    \(\therefore 2^n a_n-2^{n-1} a_{n-1}=\dfrac{2 \times 2^{n-1} a_{n-1}+4}{2}-2^{n-1} a_{n-1}\)\(=2^{n-1} a_{n-1}+2-2^{n-1} a_{n-1}=2\),
    又\(2a_1=2\),
    \(\therefore\)数列\(\{2^n a_n\}\)是首项为\(2\),公差为\(2\)的等差数列.
    (2)\(\because\)数列\(\{2^n a_n\}\)是首项为\(2\),公差为\(2\)的等差数列,
    \(\therefore 2^n a_n=2+(n-1)×2=2n\),
    \(\therefore a_n=\dfrac{2 n}{2^n}=\dfrac{n}{2^{n-1}}\).
    \(\therefore \{a_n\}\)的通项公式为 \(a_n=\dfrac{n}{2^{n-1}}\).
     

【B组---提高题】

1.已知等差数列\(\{a_n \}\),\(S_n\)是数列\(\{a_n \}\)的前\(n\)项和,对任意的\(n∈N^*\),均有\(S_4≥S_n\)成立,则 \(\dfrac{a_{10}}{a_6}\)的值不可能是(  )
 A. \(2\) \(\qquad \qquad \qquad \qquad\) B. \(3\) \(\qquad \qquad \qquad \qquad\) C.\(4\) \(\qquad \qquad \qquad \qquad\) D.\(5\)
 

2.设\(S_n\)是数列\(\{a_n \}\)的前\(n\)项和,已知\(a_1=1\),\(a_n=-S_n S_{n-1} (n≥2)\),则\(S_n=\)\(\underline{\quad \quad}\).
 

3.记\(S_n\)为数列\(\{a_n \}\)的前\(n\)项和,\(b_n\)为数列\(\{S_n\}\)的前n项积,已知 \(\dfrac{2}{S_n}+\dfrac{1}{b_n}=2\).
  (1)证明:数列\(\{b_n\}\)是等差数列;(2)求\(\{a_n \}\)的通项公式.
 
 

参考答案

  1. 答案 \(A\)
    解析 根据题意,等差数列\(\{a_n \}\),对任意的\(n∈N^*\),均有\(S_4≥S_n\)成立,
    即\(S_4\)是等差数列\(\{a_n \}\)的前\(n\)项和中的最大值,
    必有\(a_1>0\),公差\(d<0\),
    分\(3\)种情况讨论:
    ①\(a_4=0\)时,\(S_3=S_4\),\(S_3\),\(S_4\)是等差数列\(\{a_n \}\)的前n项和中的最大值,
    \(a_4=a_1+3d=0\),则\(a_1=-3d\),
    \(\dfrac{a_{10}}{a_6}=\dfrac{a_1+9 d}{a_1+5 d}=\dfrac{6 d}{2 d}=3\);
    ②\(a_5=0\)时, \(S_4=S_5\), \(S_4\),\(S_5\)是等差数列\(\{a_n \}\)的前\(n\)项和中的最大值,
    \(a_5=a_1+4d=0\),则\(a_1=-4d\),
    \(\dfrac{a_{10}}{a_6}=\dfrac{a_1+9 d}{a_1+5 d}=\dfrac{5 d}{d}=5\);
    ③\(a_4>0\),\(a_5<0\)时,\(S_4\)是等差数列\(\{a_n \}\)的前\(n\)项和中的最大值,
    此时\(a_4=a_1+3d>0\),\(a_5=a_1+4d<0\),
    则\(-3d<a_1<-4d\),变形可得 \(-4<\dfrac{a_1}{d}<-3\),
    \(\dfrac{a_{10}}{a_6}=\dfrac{a_1+9 d}{a_1+5 d}=\dfrac{\dfrac{a_1}{d}+9}{\dfrac{a_1}{d}+5}=1+\dfrac{4}{\dfrac{a_1}{d}+5}\),
    \(\because-4<\dfrac{a_1}{d}<-3\), \(\therefore 3<\dfrac{a_{10}}{a_6}<5\),
    综上, \(3 \leq \dfrac{a_{10}}{a_6} \leq 5\).
    故选:\(A\).

  2. 答案 \(S_n=\dfrac{2}{n+1}\)
    解析 \(\because 2a_n=-S_n S_{n-1} (n≥2)\), \(\therefore 2(S_n-S_{n-1})=-S_n S_{n-1}\),
    \(\therefore \dfrac{1}{S_n}-\dfrac{1}{S_{n-1}}=\dfrac{1}{2}\),
    \(\because a_1=1\), \(\therefore \dfrac{1}{S_1}=1\),
    \(\therefore\left\{\dfrac{1}{S_n}\right\}\)是以\(1\)为首项, \(\dfrac{1}{2}\)为公差的等差数列
    \(\therefore \dfrac{1}{S_n}=1+\dfrac{1}{2}(n-1)=\dfrac{n+1}{2}\),
    \(\therefore S_n=\dfrac{2}{n+1}\).

  3. 答案 (1)略 ;(2) \(a_n= \begin{cases}\dfrac{3}{2}, & n=1 \\ -\dfrac{1}{n(n+1)}, & n \geq 2\end{cases}\).
    解析 (1)证明:当\(n=1\)时,\(b_1=S_1\),
    由 \(\dfrac{2}{b_1}+\dfrac{1}{b_1}=2\),解得 \(b_1=\dfrac{3}{2}\),
    当\(n≥2\)时, \(\dfrac{b_n}{b_{n-1}}=S_n\),代入 \(\dfrac{2}{S_n}+\dfrac{1}{b_n}=2\),
    消去\(S_n\),可得 \(\dfrac{2 b_{n-1}}{b_n}+\dfrac{1}{b_n}=2\),所以 \(b_n-b_{n-1}=\dfrac{1}{2}\),
    所以\(\{b_n\}\)是以\(\dfrac{3}{2}\)为首项,\(\dfrac{1}{2}\)为公差的等差数列.
    (2)由题意,得\(a_1=S_1=b_1=\dfrac{3}{2}\),
    由(1),可得 \(b_n=\dfrac{3}{2}+(n-1) \times \dfrac{1}{2}=\dfrac{n+2}{2}\),
    由 \(\dfrac{2}{S_n}+\dfrac{1}{b_n}=2\),可得 \(S_n=\dfrac{n+2}{n+1}\),
    当\(n≥2\)时, \(a_n=S_n-S_{n-1}=\dfrac{n+2}{n+1}-\dfrac{n+1}{n}=-\dfrac{1}{n(n+1)}\),显然\(a_1\)不满足该式,
    所以\(a_n= \begin{cases}\dfrac{3}{2}, & n=1 \\ -\dfrac{1}{n(n+1)}, & n \geq 2\end{cases}\).
     

【C组---拓展题】

1.设\(a\),\(b\),\(c\)分别是\(△ABC\)内角\(A\),\(B\),\(C\)的对边,若 \(\dfrac{1}{\tan A}\), \(\dfrac{1}{\tan B}\), \(\dfrac{1}{\tan C}\)依次成公差不为\(0\)的等差数列,则(  )
 A.\(a\),\(b\),\(c\)依次成等差数列
 B.\(a^2\),\(b^2\),\(c^2\)依次成等差数列
 C.\(\sqrt{a}\), \(\sqrt{b}\), \(\sqrt{c}\)依次成等差数列
 D.\(\dfrac{1}{a}\), \(\dfrac{1}{b}\),\(\dfrac{1}{c}\)依次成等差数列
 

2.已知数列\(\{a_n \}\)满足\(a_1=6\),\(a_2=-3\),\(a_n+a_{n+3}=a_{n+1}+a_{n+2}\),\(n∈N^*\).
  (1)若\(a_3=4\),求\(a_4\),\(a_5\)的值;
  (2)证明:对任意正实数\(m\),\(\{a_{2n}+ma_{2n+1}\}\)成等差数列;
  (3)若\(a_n>a_{n+1} (n∈N^*)\),\(a_3+a_4=-33\),求数列\(\{a_n \}\)的通项公式.
 
 

参考答案

  1. 答案 \(B\)
    解析 \(\because \dfrac{1}{\tan A}\), \(\dfrac{1}{\tan B}\), \(\dfrac{1}{\tan C}\)依次成公差不为\(0\)的等差数列,
    \(\therefore \dfrac{2}{\tan B}=\dfrac{1}{\tan A}+\dfrac{1}{\tan C}\), \(\therefore \dfrac{2 \cos B}{\sin B}=\dfrac{\cos A}{\sin A}+\dfrac{\cos C}{\sin C}\),
    \(\because \dfrac{\cos A}{\sin A}+\dfrac{\cos C}{\sin C}=\dfrac{\sin C \cos A+\cos C i \sin A}{\sin A \sin C}=\dfrac{\sin (A+C)}{\sin A \sin C}=\dfrac{\sin B}{\sin A \sin C}\),
    \(\therefore \dfrac{2 \cos B}{\sin B}=\dfrac{\sin B}{\sin A \sin n C}\),
    \(\therefore 2 \cos B=\dfrac{\sin ^2 B}{\sin A \sin C}=\dfrac{b^2}{a c}\),即 \(2 a c \cos B=b^2\),
    \(\therefore a^2+c^2-b^2=b^2\), \(\therefore a^2+c^2=2b^2\),
    \(\therefore a^2\),\(b^2\),\(c^2\)成等差数列,
    因此只有\(B\)正确.
    故选:\(B\).

  2. 答案 (1) \(a_4=-5\),\(a_5=2\);(2)略 ;(3) \(a_n=15-9n,n∈N^*\).
    解析 (1)解:数列\(\{a_n \}\)满足\(a_1=6\),\(a_2=-3\),\(a_n+a_(n+3)=a_{n+1}+a_{n+2}\).
    当\(n=1\)时,\(a_1+a_4=a_2+a_3\), \(\therefore a_4=-5\),
    当\(n=2\)时,\(a_2+a_5=a_3+a_4\),\(\therefore a_5=2\).
    (2)证明:\(\because\) 数列\(\{a_n \}\)满足\(a_1=6\),\(a_2=-3\),\(a_n+a_{n+3}=a_{n+1}+a_{n+2},n∈N^*\).①
    \(\therefore n≥2\)时,\(a_{n-1}+a_{n+2}=a_n+a_{n+1}\),②
    ①+②,得\(a_{n-1}+a_{n+3}=2a_{n+1}\), \(\therefore a_{n+3}-a_{n+1}=a_{n+1}-a_{n-1}\),
    \(\therefore\left\{a_{2 n-1}\right\}\)是等差数列,设公差为\(d_1\),\(\{a_{2n}\}\)是等差数列,设公差为\(d_2\),
    \(\therefore\left(a_{2 n}+m a_{2 n+3}\right)-\left(a_{2 n}+m a_{2 n+1}\right)=\left(a_{2 n+2}-a_{2 n}\right)+m\left(a_{2 n+3}-a_{2 n+1}\right)=d_2+m d_1\),
    \(\therefore\)对任意正实数\(m\), \(\left\{a_{2 n}+m a_{2 n+1}\right\}\)成等差数列.
    (3)解:设奇数项所成等差数列的公差为\(d_1\),偶数项所成等左数列的公差为\(d_2\),
    ①当\(n\)为奇数时, \(a_n=6+\dfrac{n-1}{2} d_1\), \(a_{n+1}=-3+\dfrac{n-1}{2} d_2\),
    则 \(6+\dfrac{n-1}{2} d_1>-3+\dfrac{n-1}{2} d_2\),即\(n(d_1-d_2)+18+2(d_2-d_1)>0\),
    \(\therefore\left\{\begin{array}{l} d_1-d_2 \geq 0 \\ 1 \times\left(d_1-d_2\right)+9+d_2-d_1>0 \end{array}\right.\),\(\therefore d_1-d_2≥0\).
    ②当\(n\)为偶数时, \(a_n=-3+\left(\dfrac{n}{2}-1\right) d_2\), \(a_{n+1}=6+\dfrac{n}{2} d_1\),
    则 \(-3+\left(\dfrac{n}{2}-1\right) d_2>6+\dfrac{n}{2} d_1\), \(\therefore n(d_1-d_2)+18+2d_2<0\),
    \(\therefore\left\{\begin{array}{l} d_1-d_2 \leq 0 \\ 2 \times\left(d_1-d_2\right)+18+2 d_2<0 \end{array}\right.\), \(\therefore\left\{\begin{array}{l} d_1-d_2 \leq 0 \\ d_1<-9 \end{array}\right.\),
    综上,得\(d_1=d_2<-9\),
    \(\because a_3+a_4=a_1+a_2+d_1+d_2=3+2d_1=-33\),解得\(d_1=-18\),
    \(\therefore\) 当\(n\)为奇数时, \(a_n=6+\dfrac{n-1}{2} \times(-18)=15-9 n\),
    当\(n\)为偶数时, \(a_n=-3+\left(\dfrac{n}{2}-1\right) \times(-18)=15-9 n\),
    \(\therefore\)数列\(\{a_n \}\)的通项公式为\(a_n=15-9n,n∈N^*.\)

 

标签:right,4.2,dfrac,therefore,应用,qquad,等差数列,left
From: https://www.cnblogs.com/zhgmaths/p/16953100.html

相关文章

  • PaaS平台架构的两大应用类型
     在开发应用时,通常会把这些应用中共有的部分或者需要使用到的功能抽离出来作为基础服务,以供编写和运行从而降低应用创建和运维的复杂性。这一系列应用所要用到的基本功能......
  • 关于RSA数据加密协议在.Net中的应用
    加密协议有哪些加密协议分为对称加密和非对称加密。对称加密就是将信息使用一个密钥进行加密,解密时使用同样的密钥,同样的算法进行解密。非对称加密,又称公开密钥加密,是加......
  • 4.2.2 等差数列的前n项和公式
    \({\color{Red}{欢迎到学科网下载资料学习}}\)[【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)](https://www.zxxk.com/docpack/2875423.html)\({\col......
  • net core应用在linux中差异记录
    window平台和linux平台部署应用,运行表现可能会存在差异,遇到就随手记录下,欢迎补充:序号差异解决1发布镜像存在时区问题使用release模式发布,并设置时区2应用......
  • 4.2.1 等差数列的概念2(性质运用)
    \({\color{Red}{欢迎到学科网下载资料学习}}\)[【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)](https://www.zxxk.com/docpack/2875423.html)\({\col......
  • 安科瑞消防系统在学校的应用
    安科瑞陈盼应用场景功能1. 电气火灾监控系统是用于接收剩余电流式电气火灾监控探测器等现场设备信号,以实现对被保护电气线路的报警、监视、控制、管理的运行于计算机的工业......
  • 2.1寸旋钮屏在多功能早餐机上的应用方案
    在当今社会快节奏的工作和生活环境下,早餐常常极易被人们忽视或是随意解决,其很大一部分原因在于人们不想花费太多时间在吃早饭这件事上,早餐机的出现有力地缓解了人们吃早饭......
  • Windows Server部署.net Core应用
    安装.netcorewindowserverhosting重启IISiisreset参考文档:​​​https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x​​​​​https:......
  • IIS的应用程序池,程序异常停用,可能的原因
    1iis中应用已停止  2右键项目–高级设置  3默认内存限制,设置为0,即没有限制,遵循应用程序的自动回收机制。如果设置内存限制1024M,就是当应用内存达到1024M......
  • 如何处理 Angular 单页面应用里的 a 标签,避免点击后重新加载整个应用
    问题描述客户已经实现了一些“freehtml”组件,它是HTML的标题和包装器,与OCC响应一起作为内容。<div[innerHTML]="data?.content|safeHtml"></div>这个HTML里......