import torch
import torch.nn as nn
import torch.nn.functional as F
class DMlp(nn.Module):
'''
用来提取局部特征
'''
def __init__(self, dim, growth_rate=2.0):
super().__init__()
hidden_dim = int(dim * growth_rate)
self.conv_0 = nn.Sequential(
nn.Conv2d(dim,hidden_dim,3,1,1,groups=dim),
nn.Conv2d(hidden_dim,hidden_dim,1,1,0)
)
self.act =nn.GELU()
self.conv_1 = nn.Conv2d(hidden_dim, dim, 1, 1, 0)
def forward(self, x):
x = self.conv_0(x)
x = self.act(x)
x = self.conv_1(x)
return x
class SMFA(nn.Module):
'''
或许能代替自注意力 用来提取全局特征 这个里面也包括了局部特征的提取
'''
def __init__(self, dim=36):
super(SMFA, self).__init__()
self.linear_0 = nn.Conv2d(dim,dim*2,1,1,0)
self.linear_1 = nn.Conv2d(dim,dim,1,1,0)
self.linear_2 = nn.Conv2d(dim,dim,1,1,0)
self.lde = DMlp(dim,2)
self.dw_conv = nn.Conv2d(dim,dim,3,1,1,groups=dim)
self.gelu = nn.GELU()
self.down_scale = 8
self.alpha = nn.Parameter(torch.ones((1,dim,1,1)))
self.belt = nn.Parameter(torch.zeros((1,dim,1,1)))
def forward(self, f):
_,_,h,w = f.shape
y, x = self.linear_0(f).chunk(2, dim=1) # 输入信息 通道翻倍 然后按通道分成两部分 x y
x_s = self.dw_conv(F.adaptive_max_pool2d(x, (h // self.down_scale, w // self.down_scale))) # x 进行最大池化和深度卷积 全局特征
x_v = torch.var(x, dim=(-2,-1), keepdim=True) # x 统计空间信息的差异
# 全局信息和空间信息差异 加权融合 1*1的卷积融合通道信息 激活函数 再通过插值调整到和x相同 然后与x相乘
x_l = x * F.interpolate(self.gelu(self.linear_1(x_s * self.alpha + x_v * self.belt)), size=(h,w), mode='nearest')
y_d = self.lde(y) # 倒残差结构 这个就是局部信息模块
# 处理之后的x和y再通过加法和1*1的卷积融合
return self.linear_2(x_l + y_d)
if __name__ == '__main__':
block = SMFA(dim=32)
input = torch.rand(1, 32, 64, 64)
output = block(input)
print(input.size())
print(output.size())
标签:__,dim,提取,nn,self,torch,SFMA,全局,Conv2d
From: https://www.cnblogs.com/plumIce/p/18550900