paper
`
import torch.nn as nn
import torch
import torch.nn.functional as F
def build_act_layer(act_type):
"""Build activation layer."""
if act_type is None:
return nn.Identity()
assert act_type in ['GELU', 'ReLU', 'SiLU']
if act_type == 'SiLU':
return nn.SiLU()
elif act_type == 'ReLU':
return nn.ReLU()
else:
return nn.GELU()
class ElementScale(nn.Module):
"""A learnable element-wise scaler."""
def __init__(self, embed_dims, init_value=0., requires_grad=True):
super(ElementScale, self).__init__()
self.scale = nn.Parameter(
init_value * torch.ones((1, embed_dims, 1, 1)),
requires_grad=requires_grad
)
def forward(self, x):
return x * self.scale
class MultiOrderDWConv(nn.Module):
"""Multi-order Features with Dilated DWConv Kernel.
Args:
embed_dims (int): Number of input channels.
dw_dilation (list): Dilations of three DWConv layers.
channel_split (list): The raletive ratio of three splited channels.
"""
def __init__(self,
embed_dims,
dw_dilation=[1, 2, 3,],
channel_split=[1, 3, 4,],
):
super(MultiOrderDWConv, self).__init__()
'''
1/8 3/8 4/8
1/8 dim 3/8 dim 4/8 dim
'''
self.split_ratio = [i / sum(channel_split) for i in channel_split]
self.embed_dims_1 = int(self.split_ratio[1] * embed_dims)
self.embed_dims_2 = int(self.split_ratio[2] * embed_dims)
self.embed_dims_0 = embed_dims - self.embed_dims_1 - self.embed_dims_2
self.embed_dims = embed_dims
assert len(dw_dilation) == len(channel_split) == 3
assert 1 <= min(dw_dilation) and max(dw_dilation) <= 3
assert embed_dims % sum(channel_split) == 0
# basic DW conv
self.DW_conv0 = nn.Conv2d(
in_channels=self.embed_dims,
out_channels=self.embed_dims,
kernel_size=5,
padding=(1 + 4 * dw_dilation[0]) // 2,
groups=self.embed_dims,
stride=1, dilation=dw_dilation[0],
)
# DW conv 1
self.DW_conv1 = nn.Conv2d(
in_channels=self.embed_dims_1,
out_channels=self.embed_dims_1,
kernel_size=5,
padding=(1 + 4 * dw_dilation[1]) // 2,
groups=self.embed_dims_1,
stride=1, dilation=dw_dilation[1],
)
# DW conv 2
self.DW_conv2 = nn.Conv2d(
in_channels=self.embed_dims_2,
out_channels=self.embed_dims_2,
kernel_size=7,
padding=(1 + 6 * dw_dilation[2]) // 2,
groups=self.embed_dims_2,
stride=1, dilation=dw_dilation[2],
)
# a channel convolution
self.PW_conv = nn.Conv2d( # point-wise convolution
in_channels=embed_dims,
out_channels=embed_dims,
kernel_size=1)
def forward(self, x):
'''
'''
x_0 = self.DW_conv0(x)
x_1 = self.DW_conv1(
x_0[:, self.embed_dims_0: self.embed_dims_0+self.embed_dims_1, ...])
x_2 = self.DW_conv2(
x_0[:, self.embed_dims-self.embed_dims_2:, ...])
x = torch.cat([
x_0[:, :self.embed_dims_0, ...], x_1, x_2], dim=1)
x = self.PW_conv(x)
return x
class MultiOrderGatedAggregation(nn.Module):
"""Spatial Block with Multi-order Gated Aggregation.
Args:
embed_dims (int): Number of input channels.
attn_dw_dilation (list): Dilations of three DWConv layers.
attn_channel_split (list): The raletive ratio of splited channels.
attn_act_type (str): The activation type for Spatial Block.
Defaults to 'SiLU'.
"""
def __init__(self,
embed_dims,
attn_dw_dilation=[1, 2, 3],
attn_channel_split=[1, 3, 4],
attn_act_type='SiLU',
attn_force_fp32=False,
):
super(MultiOrderGatedAggregation, self).__init__()
self.embed_dims = embed_dims
self.attn_force_fp32 = attn_force_fp32
self.proj_1 = nn.Conv2d(
in_channels=embed_dims, out_channels=embed_dims, kernel_size=1)
self.gate = nn.Conv2d(
in_channels=embed_dims, out_channels=embed_dims, kernel_size=1)
self.value = MultiOrderDWConv(
embed_dims=embed_dims,
dw_dilation=attn_dw_dilation,
channel_split=attn_channel_split,
)
self.proj_2 = nn.Conv2d(
in_channels=embed_dims, out_channels=embed_dims, kernel_size=1)
# activation for gating and value
self.act_value = build_act_layer(attn_act_type)
self.act_gate = build_act_layer(attn_act_type)
# decompose
self.sigma = ElementScale(
embed_dims, init_value=1e-5, requires_grad=True)
def feat_decompose(self, x):
'''
不改变宽高和维度的 点卷积
'''
x = self.proj_1(x)
# x_d: [B, C, H, W] -> [B, C, 1, 1] 计算平均值
x_d = F.adaptive_avg_pool2d(x, output_size=1)
x = x + self.sigma(x - x_d) # 每层减去平均值 再缩放 再和原来的相加
x = self.act_value(x)
return x
def forward_gating(self, g, v):
with torch.autocast(device_type='cuda', enabled=False):
g = g.to(torch.float32)
v = v.to(torch.float32)
return self.proj_2(self.act_gate(g) * self.act_gate(v))
def forward(self, x):
shortcut = x.clone()
# proj 1x1
x = self.feat_decompose(x)
# gating and value branch
g = self.gate(x) # 左分支
v = self.value(x) #右分支
# aggregation
if not self.attn_force_fp32: # 默认走这个分支
x = self.proj_2(self.act_gate(g) * self.act_gate(v))
else:
x = self.forward_gating(self.act_gate(g), self.act_gate(v))
x = x + shortcut
return x
if name == 'main':
input = torch.randn(1, 64, 32, 32).cuda()# 输入 B C H W
block = MultiOrderGatedAggregation(embed_dims=64).cuda()
output = block(input)
print(input.size())
print(output.size())
`