首页 > 其他分享 >高等数学 3.3 泰勒公式

高等数学 3.3 泰勒公式

时间:2024-09-19 15:38:04浏览次数:1  
标签:泰勒 公式 cdots cfrac 3.3 2m theta 高等数学 sin

泰勒(Taylor)中值定理1 如果函数 \(f(x)\) 在 \(x_0\) 处具有 \(n\) 阶导数,那么存在 \(x_0\) 的一个邻域,对于该领域内的任一 \(x\) ,有

\[f(x) = f(x_0) + f^{'}(x_0)(x - x_0) + \cfrac{f^{''}(x_0)}{2!}(x - x_0)^2 + \cdots + \cfrac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x) , \tag{1} \]

其中

\[R_n(x) = o((x - x_0)^n). \tag{2} \]

公式 \((1)\) 称为 \(f(x)\) 在 \(x_0\) 处(或按 \(x - x_0\) 的幂展开)的带有佩亚诺(Peano)余项的 \(n\) 阶泰勒公式,而 \(R_n(x)\) 的表达式 \((2)\) 称为佩亚诺余项,它就是用 \(n\) 次泰勒多项式来近似表达 \(f(x)\) 所产生的误差,这一误差是当 \(x \to x_0\) 时比 \((x - x_0)^n\) 高阶的无穷小,但不能由它具体估算出误差的大小。

泰勒中值定理2 如果函数 \(f(x)\) 在 \(x_0\) 的某个邻域 \(U(x_0)\) 内具有 \(n + 1\) 阶导数,那么对任一 \(x \in U(x_0)\) ,有

\[f(x) = f(x_0) + f^{'}(x_0)(x - x_0) + \cfrac{f^{''}(x_0)}{2!}(x - x_0)^2 + \cdots + \cfrac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x) , \tag{3} \]

其中

\[R_n(x) = \cfrac{f^{(n + 1)}(\xi)}{(n + 1)!} (x - x_0)^{n + 1} \tag{4} \]

公式 \((3)\) 称为 \(f(x)\) 在 \(x_0\) 处(或按 \(x - x_0\) 的幂展开)的带有拉格朗日余项的 \(n\) 阶泰勒公式,而 \(R_n(x)\) 的表达式 \((4)\) 称为拉格朗日余项。

当 \(n = 0\) 时,泰勒公式 \((3)\) 变成拉格朗日中值公式

\[f(x) = f(x_0) + f^{'}(\xi) (x - x_0) \quad (\xi 在 x_0 与 x 之间) \]

因此,泰勒中值定理2是拉格朗日中值定理的推广。

由泰勒中值定理2可知,以多项式 \(p_n(x)\) 近似表达函数 \(f(x)\) 时,其误差为 \(|R_n(x)|\) 。如果对于某个固定的 \(n\) ,当 \(x \in U(x_0)\) 时, \(|f^{(n + 1)}(x)| \leqslant M\) ,那么有估计式

\[|R_n (x)| = \left| \cfrac{f^{(n + 1)}(\xi)}{(n + 1)!} (x - x_0)^{n + 1} \right| \leqslant \cfrac{M}{(n + 1)!} |x - x_0|^{n + 1} \tag{5} \]

在泰勒公式 \((1)\) 中,如果取 \(x_0 = 0\) ,那么带有佩亚诺余项的麦克劳林公式

\[f(x) = f(0) + f^{'}(0)x + \cfrac{f^{''}(0)}{2!}x^2 + \cdots + \cfrac{f^{(n)}(0)}{n!}x^n + o(x^n) . \tag{6} \]

在泰勒公式 \((3)\) 中,如果取 \(x = 0\) ,那么 \(\xi\) 在0与 \(x\) 之间。因此可以令 \(\xi = \theta x (0 < \theta < 1)\) ,从而泰勒公式 \((3)\) 变成较简单的形式,即所谓带有拉格朗日余项的麦克劳林公式

\[f(x) = f(0) + f^{'}(0)x + \cfrac{f^{''}(0)}{2!}x^2 + \cdots + \cfrac{f^{(n)}(0)}{n!}x^n + \cfrac{f^{(n + 1)}(\theta x)}{(n + 1)!} x^{n + 1} \tag{7} \]

由 \((6)\) 或 \((7)\) 可得近似公式

\[f(x) \approx f(0) + f^{'}(0) x + \cfrac{f^{''}(0)}{2!} x^2 + \cdots + \cfrac{f^{(n)}(0)}{n!}x^n , \]

估计误差式 \((5)\) 相应地变成

\[|R_n (x)| \leqslant \cfrac{M}{(n + 1)!} |x|^{n + 1} \tag{8} \]

例1 写出函数 \(f(x) = \mathrm{e}^x\) 的带有拉格朗日余项的 \(n\) 阶麦克劳林公式。
解:因为

\[f^{'}(x) = f^{''}(x) = \cdots = f^{(n)} (x) = \mathrm{e}^x , \]

所以

\[f(0) = f^{'}(0) = f^{''}(0) = \cdots = f^{(n)} (0) = 1 \]

把这些值代入公式 \((7)\) ,并注意到 \(f^{(n + 1)}(\theta x) = \mathrm{e}^{\theta x}\) 便得

\[\mathrm{e}^x = 1 + x + \cfrac{x^2}{2!} + \cdots + \cfrac{x^n}{n!} + \cfrac{\mathrm{e}^{\theta x}}{(n + 1)!} x^{n + 1} \quad (0 < \theta < 1). \]

由这个公式可知,把 \(\mathrm{e}^x\) 用它的 \(n\) 次泰勒多项式表达为

\[\mathrm{e}^x \approx 1 + x + \cfrac{x^2}{2!} + \cdots + \cfrac{x^n}{n!} , \]

这时所产生的误差为

\[|R_n (x)| = \left| \cfrac{\mathrm{e^{\theta x}}}{(n + 1)!} x^{n + 1} \right| \leqslant \cfrac{\mathrm{e}^{|x|}}{(n + 1)!} |x|^{n + 1} \quad (0 < \theta < 1). \]

如果取 \(x = 1\) ,则得无理数 \(\mathrm{e}\) 的近似式为

\[\mathrm{e} \approx 1 + 1 + \cfrac{1}{2!} + \cdots + \cfrac{1}{n!} , \]

其误差

\[|R_n| < \cfrac{\mathrm{e}}{(n + 1)!} < \cfrac{3}{(n + 1)!} . \]

当 \(n = 10\) 时,可算出 \(\mathrm{e} \approx 2.718282\) ,其误差不超过 \(10^{-6}\) .

例2 求 \(f(x) = \sin x\) 的带有拉格朗日余项的 \(n\) 阶麦克劳林公式。
解:因为

\[f^{'}(x) = \cos x , f^{''}(x) = -\sin x , f^{'''}(x) = -\cos x , \\ f^{(4)}(x) = \sin x, \cdots , f^{(n)}(x) = \sin{\left( x + \cfrac{n \pi}{2} \right)} , \]

所以

\[f(0) = 0, f^{'}(0) = 1, f^{''}(0) = 0, f^{'''}(0) = -1, f^{(4)}(0) = 0 \]

等。它们顺序循环地取四个数 \(0, 1, 0, -1\) ,于是按公式 \((7)\) 得(令 \(n = 2m\))

\[\sin x = x - \cfrac{x^3}{3!} + \cfrac{x^5}{5!} - \cdots + (-1)^{2m - 1} \cfrac{x^{2m -1}}{(2m - 1)!} + R_{2m}(x) , \]

其中

\[R_{2m}(x) = \cfrac{\sin{[\theta x + (2m + 1) \cfrac{\pi}{2}]}}{(2m + 1)!} x^{2m + 1} = (-1)^m \cfrac{\cos \theta x}{(2m + 1)!} x^{2m + 1} \quad (0 < \theta < 1). \]

类似的还可以得到

\[\cos x = 1 - \cfrac{1}{2!}x^2 + \cfrac{1}{4!}x^4 - \cdots + (-1)^m \cfrac{1}{2m !} x^{2m} + R_{2m + 1}(x) \]

其中

\[R_{2m + 1}(x) = \cfrac{\cos{[\theta x + (m + 1)\pi]}}{(2m + 2)!} x^{2m + 2} \quad (0 < \theta < 1); \]

\[\ln{(x + 1)} = x - \cfrac{1}{2!}x^2 + \cfrac{1}{3}x^3 - \cdots + (-1)^{n - 1} \cfrac{1}{n} x^n + R_n (x), \]

其中

\[R_n (x) = \cfrac{(-1)^n}{(n + 1)(1 + \theta x)^{n + 1}} \quad (0 < \theta < 1); \]

\[(1 + x)^{\alpha} = 1 + \alpha x + \cfrac{\alpha (\alpha - 1)}{2!}x^2 + \cdots + \cfrac{\alpha (\alpha - 1) \cdots(\alpha- n + 1)}{n!}x^n + R_n (x) , \]

其中

\[R_n (x) = \cfrac{\alpha (\alpha - 1) \cdots(\alpha- n + 1)(\alpha - n)}{(n + 1)!}(1 + \theta x)^{\alpha - n - 1} x^{n + 1} \quad (0 < \theta < 1). \]

例3 利用带有佩亚诺余项的麦克劳林公式,求极限 \(\lim \limits_{x \to 0} \cfrac{\sin x - x \cos x}{\sin^3 x}\) .
解:由于分式的分母 \(\sin^3 x \thicksim x^3 (x \to 0)\) ,我们只需将分子中的 \(\sin x\) 和 \(x \cos x\) 分别用带有佩亚诺余项的3阶麦克劳林公式表示,即

\[\sin x = x - \cfrac{x^3}{3!} + o(x^3), \quad x \cos x = x - \cfrac{x^3}{2!} + o(x^3) . \]

于是

\[\sin x - x \cos x = x - \cfrac{x^3}{3!} + o(x^3) - x + \cfrac{x^3}{2!} - o(x^3) = \cfrac{1}{3} x^3 + o(x^3) , \]

对上式作运算时,把两个比 \(x^3\) 高阶的无穷小的代数和仍记作 \(o(x^3)\) ,故

\[\lim_{x \to 0} \cfrac{\sin x - x \cos x}{\sin^3 x} = \lim_{x \to 0} \cfrac{\cfrac{1}{3} x^3 + o(x^3)}{x^3} = \cfrac{1}{3} . \]

标签:泰勒,公式,cdots,cfrac,3.3,2m,theta,高等数学,sin
From: https://www.cnblogs.com/mowenpan1995/p/18420666/gdsx3-3tailegongshi

相关文章

  • 高等数学 3.2 洛必达法则
    定理1设(1)当\(x\toa\)时,函数\(f(x)\)及\(F(x)\)都趋于零;(2)在点\(a\)的某去心邻域内,\(f^{'}(x)\)及\(F^{'}(x)\)都存在且\(F^{'}(x)\neq0\);(3)\(\lim\limits_{x\toa}\cfrac{f^{'}(x)}{F^{'}(x)}\)存在(或为无穷大),则\[\lim_......
  • 高等数学 2.5 函数的微分
    目录一、微分的定义二、微分的几何意义三、微分运算1、函数和、差、积、商的微分法则2、复合函数的微分法则四、微分在近似计算中的应用一、微分的定义定义设函数\(y=f(x)\)在某区间内有定义,\(x_0\)及\(x_0+\Deltax\)在这区间内,如果函数的增量\[\Deltay=f(x_0+......
  • 高等数学 2.4 隐函数及由参数方程确定的函数的导数
    目录一、隐函数求导二、由参数方程所确定的函数的导数三、相关变化率一、隐函数求导函数\(y=f(x)\)表示两个变量\(y\)与\(x\)之间的对应关系,这种对应关系可以用各种不同方式表达,例如\(y=\sinx\),\(y=\lnx+\sqrt{1-x^2}\)等。这种函数表达方式的特点是:等号左......
  • 高等数学 2.3 高阶导数
    一般地,函数\(y=f(x)\)的导数\(y\'=f\'(x)\)仍然是\(x\)的函数。我们把\(y\'=f\'(x)\)的导数叫做函数\(y=f(x)\)的二阶导数,记作\(y\''\)或\(\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}\),即\[y''=(y')......
  • 高等数学 2.2 函数的求导法则
    目录1、常数和基本初等函数的导数公式2、函数的和、差、积、商的求导法则3、反函数的求导法则4、复合函数的求导法则1、常数和基本初等函数的导数公式公式公式(1)\((C)'=0\)(2)\((x^{\mu})'=\mux^{\mu-1}\)(3)\((\sinx)'=\cosx\)(4)\((\cosx)'=-\sinx\)......
  • 高等数学 2.1 导数概念
    目录一、导数的定义函数在一点处的导数与导函数单侧导数二、导数的几何意义三、函数可导性与连续性的关系一、导数的定义函数在一点处的导数与导函数定义设函数\(y=f(x)\)在点\(x_0\)的某个邻域内有定义,当自变量\(x\)在\(x_0\)处取得增量\(\Deltax\)(点\(x_0+......
  • spring boot 3.3.3 通用 pom.xml
      springboot3.3.3通用pom.xml <?xmlversion="1.0"encoding="UTF-8"?><projectxmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation=&qu......
  • AnolisOS-7.9编译升级安装 OpenSSH_9.8p1+OpenSSL 3.3.0+zlib1.3.1
     实验镜像AnolisOS-7.9-QU1-x86_64-dvd.iso安装过程内核选择3.x #安装必备和常用软件包#安装相关的依赖项,如有遗漏再次安装yuminstall-y perl-IPC-Cmdvimmakegccwgettarlrzsznet-tools #安装zlib./configure--prefix=/usr/local/zlibmake&&makei......
  • ubuntu-22.04.4编译升级安装 OpenSSH_9.8p1+OpenSSL 3.3.2+zlib1.3.1
     实验镜像ubuntu-22.04.4-live-server-amd64.iso#安装必备和常用软件包#安装相关的依赖项,如有遗漏再次安装aptinstall-y libz-devvimgccwgettarlrzsznanomakenet-tools #安装zlib./configure--prefix=/usr/local/zlibmake&&makeinstall #安装......
  • 高等数学--基础复习9到12章P121
    【九-1】多元函数的基本概念--平面点集内点;外点;边界点;连通集;等概念,考的不多【九-2】n维空间【九-3】多元函数的极限类比一元函数的极限【九-4】偏导数定义;怎么求;几何意义;偏导数存在与连续的联系【九-6】全微分【九-7】多元复合函数求导(理论讲解)【九-8】多元复合函数求导......