首页 > 其他分享 >【高等代数笔记】(8-13)N阶行列式

【高等代数笔记】(8-13)N阶行列式

时间:2024-08-28 21:27:09浏览次数:11  
标签:11 ... 13 12 21 22 vmatrix 行列式 代数

2. N阶行列式

数域 K \textbf{K} K上的二元方程组
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \left\{\begin{array}{l} a_{11}x_{1}+a_{12}x_{2}=b_{1}\\ a_{21}x_{1}+a_{22}x_{2}=b_{2} \end{array}\right. {a11​x1​+a12​x2​=b1​a21​x1​+a22​x2​=b2​​
写其系数矩阵:
( a 11 a 12 a 21 a 22 ) \begin{pmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{pmatrix} (a11​a21​​a12​a22​​)
上节课发现若 a 11 a 22 − a 12 a 21 = 0 a_{11}a_{22}-a_{12}a_{21}=0 a11​a22​−a12​a21​=0,则此方程组无解或有无穷多个解;若 a 11 a 22 − a 12 a 21 ≠ 0 a_{11}a_{22}-a_{12}a_{21}\ne 0 a11​a22​−a12​a21​=0,则此方程组有唯一解。该表达式称为二阶行列式,记为:
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21} ​a11​a21​​a12​a22​​ ​=a11​a22​−a12​a21​
它也称为矩阵 A \textbf{A} A的行列式,记作 ∣ A ∣ |\textbf{A}| ∣A∣,或 det ⁡ A \det \textbf{A} detA

  • 数域 K \textbf{K} K上系数矩阵为 A \textbf{A} A的二元一次方程组有唯一解 ⇔ ∣ A ∣ ≠ 0 \Leftrightarrow|\textbf{A}|\ne 0 ⇔∣A∣=0
  • 数域 K \textbf{K} K上系数矩阵为 A \textbf{A} A的二元一次方程组有无穷多个解或无解 ⇔ ∣ A ∣ = 0 \Leftrightarrow|\textbf{A}|=0 ⇔∣A∣=0
    对推广到 n n n元线性方程组,我们要研究 n n n阶行列式。
    观察二阶行列式,我们发现,其行列式展开后的式子的每一项是取自不同行不同列的两个元素的乘积,每一项按照行指标按自然序(从小到大)排好位置,列指标所成的排列有 2 ! 2! 2!项的代数和,当列指标形成的排列时,该项带正号,当列指标形成的排列时,该项带负号

2.1 n n n元排列

  • 1 , 2 , . . . , n 1,2,...,n 1,2,...,n或 n n n个不同的正整数的全排列就称为一个 n n n元排列
  • 从而 1 , 2 , . . . , n 1,2,...,n 1,2,...,n或 n n n个不同的正整数形成的 n n n元排列有 n ! n! n!个
    【例】 3 3 3元排列有 3 ! = 6 3!=6 3!=6个, 123 , 132 , 213 , 231 , 312 , 321 123,132,213,231,312,321 123,132,213,231,312,321

【例】 4 4 4元排列: 2431 2431 2431从左到右,顺序(从小到大)的数对有: 24 , 23 24,23 24,23;逆序(从大到小)的数对有 21 , 43 , 41 , 31 21,43,41,31 21,43,41,31

  • 排列中逆序的数对的数目称为这个排列的逆序数,比如上面例子中的逆序数为4,逆序数记作 τ \tau τ,比如上面例子记作 τ ( 2431 ) = 4 \tau(2431)=4 τ(2431)=4

2.2 排列的奇偶性

把逆序数是偶数的排列称为偶排列,逆序数是奇数的排列称为奇排列,比如刚才例子中的排列2431就是偶排列。

我们将偶排列2431的4和1交换位置,其余的数不动,我们称这样的变换为一个对换,记作 ( 4 , 1 ) (4,1) (4,1),对换后变成排列2134, τ ( 2134 ) = 1 \tau(2134)=1 τ(2134)=1,所以2134是一个奇排列。

【定理1】对换会改变排列的奇偶性。
【证】先看对换的两个数相邻的情形
. . . p . . . i j . . . q . . . ...p...ij...q... ...p...ij...q...(排列1)
对换 ( i , j ) (i,j) (i,j)后 . . . p . . . j i . . . q . . . ...p...ji...q... ...p...ji...q...(排列2)
排列(1)与(2)的逆序数就相差1,所以排列(1)和(2)的奇偶性相反,
一般情形, . . . i k 1 . . . k s j . . . ...ik_{1}...k_{s}j... ...ik1​...ks​j...(排列3)
对换 ( i , j ) (i,j) (i,j)后 . . . j k 1 . . . k s i . . . ...jk_{1}...k_{s}i... ...jk1​...ks​i...(排列4)
排列(3)到排列(4)相当于做若干次对换 ( i , k 1 ) , . . . , ( i , k s ) , ( i , j ) (i,k_{1}),...,(i,k_{s}),(i,j) (i,k1​),...,(i,ks​),(i,j)变成 . . . k 1 . . . k s j i . . . ...k_{1}...k_{s}ji... ...k1​...ks​ji...,
再经过对换 ( j , k s ) , . . . , ( j , k 1 ) (j,k_{s}),...,(j,k_{1}) (j,ks​),...,(j,k1​)变成 . . . j k 1 . . . k s i . . . ...jk_{1}...k_{s}i... ...jk1​...ks​i...,排列(3)变成排列(4)经过 s + 1 + s = 2 s + 1 , s ∈ N + s+1+s=2s+1,s\in\mathbb{N}^{+} s+1+s=2s+1,s∈N+次变换,经过奇数次相邻两数对换,从而排列(3)与(4)奇偶性相反。

12345是偶排列,将25143( τ ( 25143 ) = 5 \tau(25143)=5 τ(25143)=5,奇排列)通过对换变成12345,25143(5,3)→23145(3,1)→21345(2,1)→12345

【定理2】任一 n n n元排列 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1​,j2​,...,jn​与 1 , 2 , . . . , n 1,2,...,n 1,2,...,n可以经过一系列的对换互变,且所做对换的次数与 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1​,j2​,...,jn​有相同的奇偶性。
【证】 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1​,j2​,...,jn​经过 s s s次对换变成 1 , 2 , . . . , n 1,2,...,n 1,2,...,n(偶排列),设 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1​,j2​,...,jn​是奇排列,则 s s s必为奇数,设 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1​,j2​,...,jn​是偶排列,则 s s s必为偶数。

2.3 n n n阶行列式的定义

【定义1】 n n n阶行列式:
∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix} ​a11​a21​...an1​​a12​a22​...an2​​............​a1n​a2n​...ann​​
n n n阶行列是 n ! n! n!项的代数和,其中每一项是不同行和不同列的 n n n个元素的乘积,每一项按行指标成自然序排好位置,当列指标形成的排列是偶排列时,该项带正号,当列指标形成的排列是奇排列的时候,该项带负号。

比如二阶行列式 ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 = ∑ j 1 j 2 ( − 1 ) τ ( j 1 j 2 ) a 1 j 1 a 2 j 2 \begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}=\sum\limits_{j_{1}j_{2}}(-1)^{\tau(j_{1}j_{2})}a_{1j_{1}}a_{2j_{2}} ​a11​a21​​a12​a22​​ ​=a11​a22​−a12​a21​=j1​j2​∑​(−1)τ(j1​j2​)a1j1​​a2j2​​

则 ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∑ j 1 j 2 . . . j n a 1 j 1 ( − 1 ) τ ( j 1 j 2 . . . j n ) a 2 j 2 . . . a n j n \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=\sum\limits_{j_{1}j_{2}...j_{n}}a_{1j_{1}}(-1)^{\tau(j_{1}j_{2}...j_{n})}a_{2j_{2}}...a_{nj_{n}} ​a11​a21​...an1​​a12​a22​...an2​​............​a1n​a2n​...ann​​ ​=j1​j2​...jn​∑​a1j1​​(−1)τ(j1​j2​...jn​)a2j2​​...anjn​​(行指标按自然序排好)
设矩阵 A = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ) \textbf{A}=\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn} \end{pmatrix} A= ​a11​a21​...an1​​a12​a22​...an2​​............​a1n​a2n​...ann​​ ​,该矩阵可简记为简记成 A = ( a i j ) \textbf{A}=(a_{ij}) A=(aij​),其中 a i j a_{ij} aij​是第 i i i行第 j j j列的交叉位置元素即 A \textbf{A} A的 ( i , j ) (i,j) (i,j)元,则上述行列式也可以记作 n n n阶矩阵的阶行列式,可记为 ∣ A ∣ |\textbf{A}| ∣A∣或 det ⁡ A \det\textbf{A} detA

  • 1阶行列式: ∣ a ∣ = a |a|=a ∣a∣=a
  • 2阶行列式: ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 = ∑ j 1 j 2 ( − 1 ) τ ( j 1 j 2 ) a 1 j 1 a 2 j 2 \begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}=\sum\limits_{j_{1}j_{2}}(-1)^{\tau(j_{1}j_{2})}a_{1j_{1}}a_{2j_{2}} ​a11​a21​​a12​a22​​ ​=a11​a22​−a12​a21​=j1​j2​∑​(−1)τ(j1​j2​)a1j1​​a2j2​​
  • 3阶行列式:3元排列
    偶排列:123,231,312
    奇排列:132,213,321
    ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} ​a11​a21​a31​​a12​a22​a32​​a13​a23​a33​​ ​=a11​a22​a33​+a12​a23​a31​+a13​a21​a32​−a11​a23​a32​−a12​a21​a33​−a13​a22​a31​

2.4 上三角形行列式

∣ a 11 a 12 a 13 . . . a 1 , n − 1 a 1 n 0 a 22 a 23 . . . a 2 , n − 1 a 2 n 0 0 a 33 . . . a 3 , n − 1 a 3 n . . . . . . . . . . . . . . . . . . 0 0 0 . . . a n − 1 , n − 1 a n − 1 , n 0 0 0 . . . 0 a n n ∣ = a 11 a 22 a 33 . . . a n − 1 , n − 1 a n n \begin{vmatrix} a_{11} & a_{12} &a_{13}& ... & a_{1,n-1}&a_{1n}\\ 0 & a_{22} &a_{23}& ... & a_{2,n-1}&a_{2n}\\ 0 & 0 &a_{33}& ... & a_{3,n-1}&a_{3n}\\ ... & ... &...& ... & ...&...\\ 0 & 0 &0& ... & a_{n-1,n-1}&a_{n-1,n}\\ 0 & 0 &0& ... & 0&a_{nn} \end{vmatrix}=a_{11}a_{22}a_{33}...a_{n-1,n-1}a_{nn} ​a11​00...00​a12​a22​0...00​a13​a23​a33​...00​..................​a1,n−1​a2,n−1​a3,n−1​...an−1,n−1​0​a1n​a2n​a3n​...an−1,n​ann​​ ​=a11​a22​a33​...an−1,n−1​ann​(因为取自不同行不同列,且列指标按自然序排列,是偶排列,所以带正号)
主对角线下方元素全为0这样的 n n n阶行列式,我们称为上三角形行列式
【命题】 n n n阶上三角形行列式的值等于它的主对角线上 n n n个元素的乘积。


2.5 行列式的转置

n n n阶行列式的一项为 ( − 1 ) τ ( j 1 j 2 . . . j n ) a 1 j 1 a 2 j 2 . . . a n j n (-1)^{\tau(j_{1}j_{2}...j_{n})}a_{1j_{1}}a_{2j_{2}}...a_{nj_{n}} (−1)τ(j1​j2​...jn​)a1j1​​a2j2​​...anjn​​经过 s s s次两个元素互换位置,相应的行指标所成的排列 12... n 12...n 12...n经过 s s s次对换变为 i 1 , i 2 , . . . , i n i_{1},i_{2},...,i_{n} i1​,i2​,...,in​,列指标排列 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1​,j2​,...,jn​经过 s s s次对换变为 k 1 , k 2 , . . . , k n k_{1},k_{2},...,k_{n} k1​,k2​,...,kn​, ( − 1 ) τ ( i 1 , i 2 , . . . , i n ) = ( − 1 ) s (-1)^{\tau(i_{1},i_{2},...,i_{n})}=(-1)^{s} (−1)τ(i1​,i2​,...,in​)=(−1)s(1次对换改变奇偶性, s s s次,就改变 s s s次奇偶性)
( − 1 ) τ ( k 1 , k 2 , . . . , k n ) = ( − 1 ) s ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) (-1)^{\tau(k_{1},k_{2},...,k_{n})}=(-1)^{s}(-1)^{\tau(j_{1},j_{2},...,j_{n})} (−1)τ(k1​,k2​,...,kn​)=(−1)s(−1)τ(j1​,j2​,...,jn​)(列指标原来的排列 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1​,j2​,...,jn​的正负号是由 ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) (-1)^{\tau(j_{1},j_{2},...,j_{n})} (−1)τ(j1​,j2​,...,jn​)所决定,所以要乘一个 ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) (-1)^{\tau(j_{1},j_{2},...,j_{n})} (−1)τ(j1​,j2​,...,jn​)),这两个式子相乘得 ( − 1 ) τ ( k 1 , k 2 , . . . , k n ) + τ ( j 1 , j 2 , . . . , j n ) = ( − 1 ) 2 s + τ ( j 1 , j 2 , . . . , j n ) = 1 ⋅ ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) = ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) (-1)^{\tau(k_{1},k_{2},...,k_{n})+\tau(j_{1},j_{2},...,j_{n})}=(-1)^{2s+\tau(j_{1},j_{2},...,j_{n})}=1\cdot(-1)^{\tau(j_{1},j_{2},...,j_{n})}=(-1)^{\tau(j_{1},j_{2},...,j_{n})} (−1)τ(k1​,k2​,...,kn​)+τ(j1​,j2​,...,jn​)=(−1)2s+τ(j1​,j2​,...,jn​)=1⋅(−1)τ(j1​,j2​,...,jn​)=(−1)τ(j1​,j2​,...,jn​),于是我们等量代替, ( − 1 ) τ ( j 1 j 2 . . . j n ) a 1 j 1 a 2 j 2 . . . a n j n = ( − 1 ) τ ( k 1 , k 2 , . . . , k n ) + τ ( j 1 , j 2 , . . . , j n ) a 2 j 2 . . . a n j n (-1)^{\tau(j_{1}j_{2}...j_{n})}a_{1j_{1}}a_{2j_{2}}...a_{nj_{n}}=(-1)^{\tau(k_{1},k_{2},...,k_{n})+\tau(j_{1},j_{2},...,j_{n})}a_{2j_{2}}...a_{nj_{n}} (−1)τ(j1​j2​...jn​)a1j1​​a2j2​​...anjn​​=(−1)τ(k1​,k2​,...,kn​)+τ(j1​,j2​,...,jn​)a2j2​​...anjn​​
特别地,按列指标排自然序 A = ( a i j ) \textbf{A}=(a_{ij}) A=(aij​)的行列式 ∣ A ∣ = ∑ i 1 , i 2 , . . . , i n ( − 1 ) τ ( i 1 , i 2 , . . . , i n ) a i 1 1 a i 2 2 . . . a i n n |\textbf{A}|=\sum\limits_{i_{1},i_{2},...,i_{n}}(-1)^{\tau(i_{1},i_{2},...,i_{n})}a_{i_{1}1}a_{i_{2}2}...a_{i_{n}n} ∣A∣=i1​,i2​,...,in​∑​(−1)τ(i1​,i2​,...,in​)ai1​1​ai2​2​...ain​n​

设 n n n阶矩阵 A = ( a i j ) = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ) \textbf{A}=(a_{ij})=\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn} \end{pmatrix} A=(aij​)= ​a11​a21​...an1​​a12​a22​...an2​​............​a1n​a2n​...ann​​ ​,把行列互换得到的矩阵 ( a 11 a 21 . . . a n 1 a 12 a 22 . . . a n 2 . . . . . . . . . . . . a 1 n a 2 n . . . a n n ) \begin{pmatrix} a_{11} & a_{21} & ... & a_{n1}\\ a_{12} & a_{22} & ... & a_{n2}\\ ... & ...&...&...\\ a_{1n} & a_{2n} & ... & a_{nn} \end{pmatrix} ​a11​a12​...a1n​​a21​a22​...a2n​​............​an1​an2​...ann​​ ​,将这个矩阵称为矩阵 A \textbf{A} A的转置,记作 A ′ \textbf{A}' A′或 A T \textbf{A}^{T} AT或 A t \textbf{A}^{t} At(国内外教材写法不同,工科常用 A T \textbf{A}^{T} AT,数学专业常用 A ′ \textbf{A}' A′) ∣ A ′ ∣ ( 列指标呈自然序 ) = ∣ a 11 a 21 . . . a n 1 a 12 a 22 . . . a n 2 . . . . . . . . . . . . a 1 n a 2 n . . . a n n ∣ = ∑ i 1 , i 2 , . . . , i n ( − 1 ) τ ( i 1 , i 2 , . . . , i n ) a i 1 , 1 a i 2 , 2 . . . a i n , n = ( 刚才证明的,行指标呈自然序) ∣ A ∣ |\textbf{A}'|(列指标呈自然序)=\begin{vmatrix} a_{11} & a_{21} & ... & a_{n1}\\ a_{12} & a_{22} & ... & a_{n2}\\ ... & ...&...&...\\ a_{1n} & a_{2n} & ... & a_{nn} \end{vmatrix}=\sum\limits_{i_{1},i_{2},...,i_{n}}(-1)^{\tau(i_{1},i_{2},...,i_{n})}a_{i_{1},1}a_{i_{2},2}...a_{i_{n},n}=(刚才证明的,行指标呈自然序)|\textbf{A}| ∣A′∣(列指标呈自然序)= ​a11​a12​...a1n​​a21​a22​...a2n​​............​an1​an2​...ann​​ ​=i1​,i2​,...,in​∑​(−1)τ(i1​,i2​,...,in​)ai1​,1​ai2​,2​...ain​,n​=(刚才证明的,行指标呈自然序)∣A∣

2.6 行列式的性质

  • 性质1: ∣ A ∣ = ∣ A ′ ∣ |\textbf{A}|=|\textbf{A}'| ∣A∣=∣A′∣
  • 性质2: ∣ k A ∣ = k ∣ A ∣ |k\textbf{A}|=k|\textbf{A}| ∣kA∣=k∣A∣( k = 0 k=0 k=0也成立)
    【证】 ∣ k A ∣ = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . k a i 1 k a i 2 . . . k a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∑ j 1 , j 2 , . . . , j n ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) a 1 j 1 . . . ( k a i j i ) . . . a n j n = k ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) a 1 j 1 . . . a i j i . . . a n j n = k ∣ A ∣ |k\textbf{A}|=\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ ka_{i1} & ka_{i2} & ... & ka_{in}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=\sum\limits_{j_{1},j_{2},...,j_{n}}(-1)^{\tau(j_{1},j_{2},...,j_{n})}a_{1j_{1}}...(ka_{ij_{i}})...a_{nj_{n}}=k(-1)^{\tau(j_{1},j_{2},...,j_{n})}a_{1j_{1}}...a_{ij_{i}}...a_{nj_{n}}=k|\textbf{A}| ∣kA∣= ​a11​a21​...kai1​...an1​​a12​a22​...kai2​...an2​​..................​a1n​a2n​...kain​...ann​​ ​=j1​,j2​,...,jn​∑​(−1)τ(j1​,j2​,...,jn​)a1j1​​...(kaiji​​)...anjn​​=k(−1)τ(j1​,j2​,...,jn​)a1j1​​...aiji​​...anjn​​=k∣A∣
  • 性质3: ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . b 1 + c 1 b 2 + c 2 . . . b n + c n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . b 1 b 2 . . . b n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ + ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . c 1 c 2 . . . c n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ b_{1}+c_{1}& b_{2}+c_{2} & ... & b_{n}+c_{n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ b_{1}& b_{2} & ... & b_{n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}+\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ c_{1}& c_{2} & ... & c_{n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix} ​a11​a21​...b1​+c1​...an1​​a12​a22​...b2​+c2​...an2​​..................​a1n​a2n​...bn​+cn​...ann​​ ​= ​a11​a21​...b1​...an1​​a12​a22​...b2​...an2​​..................​a1n​a2n​...bn​...ann​​ ​+ ​a11​a21​...c1​...an1​​a12​a22​...c2​...an2​​..................​a1n​a2n​...cn​...ann​​
    【证】 ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . b 1 + c 1 b 2 + c 2 . . . b n + c n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∑ j 1 , j 2 , . . . , j n ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) a 1 j 1 . . . ( b j i + c j i ) . . . a n j n = ∑ j 1 , j 2 , . . . , j n ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) a 1 j 1 . . . b j i . . . a n j n + ∑ j 1 , j 2 , . . . , j n ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) a 1 j 1 . . . c j i . . . a n j n = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . b 1 b 2 . . . b n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ + ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . c 1 c 2 . . . c n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ b_{1}+c_{1}& b_{2}+c_{2} & ... & b_{n}+c_{n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=\sum\limits_{j_{1},j_{2},...,j_{n}}(-1)^{\tau(j_{1},j_{2},...,j_{n})}a_{1j_{1}}...(b_{j_{i}}+c_{j_{i}})...a_{nj_{n}}=\sum\limits_{j_{1},j_{2},...,j_{n}}(-1)^{\tau(j_{1},j_{2},...,j_{n})}a_{1j_{1}}...b_{j_{i}}...a_{nj_{n}}+\sum\limits_{j_{1},j_{2},...,j_{n}}(-1)^{\tau(j_{1},j_{2},...,j_{n})}a_{1j_{1}}...c_{j_{i}}...a_{nj_{n}}=\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ b_{1}& b_{2} & ... & b_{n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}+\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ c_{1}& c_{2} & ... & c_{n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix} ​a11​a21​...b1​+c1​...an1​​a12​a22​...b2​+c2​...an2​​..................​a1n​a2n​...bn​+cn​...ann​​ ​=j1​,j2​,...,jn​∑​(−1)τ(j1​,j2​,...,jn​)a1j1​​...(bji​​+cji​​)...anjn​​=j1​,j2​,...,jn​∑​(−1)τ(j1​,j2​,...,jn​)a1j1​​...bji​​...anjn​​+j1​,j2​,...,jn​∑​(−1)τ(j1​,j2​,...,jn​)a1j1​​...cji​​...anjn​​= ​a11​a21​...b1​...an1​​a12​a22​...b2​...an2​​..................​a1n​a2n​...bn​...ann​​ ​+ ​a11​a21​...c1​...an1​​a12​a22​...c2​...an2​​..................​a1n​a2n​...cn​...ann​​
  • 性质4:若矩阵 C \textbf{C} C是矩阵 A \textbf{A} A经过两行互换后的来的矩阵,则 ∣ C ∣ = − ∣ A ∣ |\textbf{C}|=-|\textbf{A}| ∣C∣=−∣A∣(两行互换,行列式反号)
    【证】假设将第 k k k行和第 i i i行互换, ∣ A ∣ = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a i 1 b i 2 . . . b i n . . . . . . . . . . . . a k 1 b k 2 . . . b k n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ |\textbf{A}|=\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ a_{i1}& b_{i2} & ... & b_{in}\\ ... & ...&...&...\\ a_{k1}& b_{k2} & ... & b_{kn}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix} ∣A∣= ​a11​a21​...ai1​...ak1​...an1​​a12​a22​...bi2​...bk2​...an2​​........................​a1n​a2n​...bin​...bkn​...ann​​
    ∣ C ∣ = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a k 1 b k 2 . . . b k n . . . . . . . . . . . . a i 1 b i 2 . . . b i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∑ j 1 , j 2 , . . . , j k , . . . , j i , . . . , j n ( − 1 ) τ ( j 1 , j 2 , . . . , j k , . . . , j i , . . . , j n ) a 1 j 1 . . . a k j i . . . a i j k . . . a n j n ( 乘法交换律 ) = ∑ j 1 , j 2 , . . . , j k , . . . , j i , . . . , j n ( − 1 ) τ ( j 1 , j 2 , . . . , j k , . . . , j i , . . . , j n ) a 1 j 1 . . . a i j k . . . a k j i . . . a n j n ( 对换,改变奇偶性,前面乘 − 1 ) = ∑ j 1 , j 2 , . . . , j i , . . . , j k , . . . , j n ( − 1 ) ⋅ ( − 1 ) τ ( j 1 , j 2 , . . . , j i , . . . , j k , . . . , j n ) a 1 j 1 . . . a i j k . . . a k j i . . . a n j n = − ∑ j 1 , j 2 , . . . , j i , . . . , j k , . . . , j n ( − 1 ) τ ( j 1 , j 2 , . . . , j i , . . . , j k , . . . , j n ) a 1 j 1 . . . a i j k . . . a k j i . . . a n j n = − ∣ A ∣ |\textbf{C}|=\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ a_{k1}& b_{k2} & ... & b_{kn}\\ ... & ...&...&...\\ a_{i1}& b_{i2} & ... & b_{in}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=\sum\limits_{j_{1},j_{2},...,j_{k},...,j_{i},...,j_{n}}(-1)^{\tau(j_{1},j_{2},...,j_{k},...,j_{i},...,j_{n})}a_{1j_{1}}...a_{kj_{i}}...a_{ij_{k}}...a_{nj_{n}}(乘法交换律)=\sum\limits_{j_{1},j_{2},...,j_{k},...,j_{i},...,j_{n}}(-1)^{\tau(j_{1},j_{2},...,j_{k},...,j_{i},...,j_{n})}a_{1j_{1}}...a_{ij_{k}}...a_{kj_{i}}...a_{nj_{n}}(对换,改变奇偶性,前面乘-1)=\sum\limits_{j_{1},j_{2},...,j_{i},...,j_{k},...,j_{n}}(-1)\cdot(-1)^{\tau(j_{1},j_{2},...,j_{i},...,j_{k},...,j_{n})}a_{1j_{1}}...a_{ij_{k}}...a_{kj_{i}}...a_{nj_{n}}=-\sum\limits_{j_{1},j_{2},...,j_{i},...,j_{k},...,j_{n}}(-1)^{\tau(j_{1},j_{2},...,j_{i},...,j_{k},...,j_{n})}a_{1j_{1}}...a_{ij_{k}}...a_{kj_{i}}...a_{nj_{n}}=-|\textbf{A}| ∣C∣= ​a11​a21​...ak1​...ai1​...an1​​a12​a22​...bk2​...bi2​...an2​​........................​a1n​a2n​...bkn​...bin​...ann​​ ​=j1​,j2​,...,jk​,...,ji​,...,jn​∑​(−1)τ(j1​,j2​,...,jk​,...,ji​,...,jn​)a1j1​​...akji​​...aijk​​...anjn​​(乘法交换律)=j1​,j2​,...,jk​,...,ji​,...,jn​∑​(−1)τ(j1​,j2​,...,jk​,...,ji​,...,jn​)a1j1​​...aijk​​...akji​​...anjn​​(对换,改变奇偶性,前面乘−1)=j1​,j2​,...,ji​,...,jk​,...,jn​∑​(−1)⋅(−1)τ(j1​,j2​,...,ji​,...,jk​,...,jn​)a1j1​​...aijk​​...akji​​...anjn​​=−j1​,j2​,...,ji​,...,jk​,...,jn​∑​(−1)τ(j1​,j2​,...,ji​,...,jk​,...,jn​)a1j1​​...aijk​​...akji​​...anjn​​=−∣A∣
  • 性质5:行列式两行相等,行列式的值为0;【证】先看两行相等的情况 ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ ( 换相同的两行 ) = − ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}(换相同的两行)=-\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix} ​a11​...ai1​...ai1​...an1​​a12​...ai2​...ai2​...an2​​.....................​a1n​...ain​...ain​...ann​​ ​(换相同的两行)=− ​a11​...ai1​...ai1​...an1​​a12​...ai2​...ai2​...an2​​.....................​a1n​...ain​...ain​...ann​​
    所以 ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = 0 \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=0 ​a11​...ai1​...ai1​...an1​​a12​...ai2​...ai2​...an2​​.....................​a1n​...ain​...ain​...ann​​ ​=0
  • 性质6:行列式两行成比例,行列式的值为0;
    【证】现在讨论两行成比例的情况:
    ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . l a i 1 l a i 2 . . . l a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = l ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = 0 \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ la_{i1} & la_{i2} & ... & la_{in}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=l\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=0 ​a11​...ai1​...lai1​...an1​​a12​...ai2​...lai2​...an2​​.....................​a1n​...ain​...lain​...ann​​ ​=l ​a11​...ai1​...ai1​...an1​​a12​...ai2​...ai2​...an2​​.....................​a1n​...ain​...ain​...ann​​ ​=0
  • 性质7:将矩阵 A \textbf{A} A的第 i i i行(列)的 l l l倍加到第 k k k行(列)变为矩阵 D \textbf{D} D,则 ∣ A ∣ = ∣ D ∣ |\textbf{A}|=|\textbf{D}| ∣A∣=∣D∣
    【证】 ∣ D ∣ = ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . l a i 1 + a k 1 l a i 2 + a k 2 . . . l a i n + a k n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = l ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ + ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a k 1 a k 2 . . . a k n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = 0 + ∣ A ∣ = ∣ A ∣ |\textbf{D}|=\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ l a_{i1} +a_{k1} & l a_{i2} +a_{k2} & ... & l a_{in} +a_{kn}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=l\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}+\begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ...&...&...\\ a_{i1} & a_{i2} & ... & a_{in}\\ ... & ...&...&...\\ a_{k1} & a_{k2} & ... & a_{kn}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=0+|\textbf{A}|=|\textbf{A}| ∣D∣= ​a11​...ai1​...lai1​+ak1​...an1​​a12​...ai2​...lai2​+ak2​...an2​​.....................​a1n​...ain​...lain​+akn​...ann​​ ​=l ​a11​...ai1​...ai1​...an1​​a12​...ai2​...ai2​...an2​​.....................​a1n​...ain​...ain​...ann​​ ​+ ​a11​...ai1​...ak1​...an1​​a12​...ai2​...ak2​...an2​​.....................​a1n​...ain​...akn​...ann​​ ​=0+∣A∣=∣A∣
    【例1】计算 n ( n ≥ 2 ) n(n\ge 2) n(n≥2)阶行列式 ∣ k λ λ . . . λ λ k λ . . . λ . . . . . . . . . . . . . . . λ λ λ . . . k ∣ \begin{vmatrix} k & \lambda & \lambda&... & \lambda\\ \lambda & k &\lambda& ... & \lambda\\ ... & ...&...&...&...\\ \lambda & \lambda & \lambda & ... & k\\ \end{vmatrix} ​kλ...λ​λk...λ​λλ...λ​............​λλ...k​
    【解】原式(将后 2 , 3 , . . . , n 2,3,...,n 2,3,...,n列的1倍依次加到第1列上) = ∣ k + ( n − 1 ) λ λ λ . . . λ k + ( n − 1 ) λ k λ . . . λ . . . . . . . . . . . . . . . k + ( n − 1 ) λ λ λ . . . k ∣ = ( k + ( n − 1 ) λ ) ∣ 1 λ λ . . . λ 1 k λ . . . λ . . . . . . . . . . . . . . . 1 λ λ . . . k ∣ ( 将第 1 行的负 1 倍依次加到第 2 , 3 , . . . , n 行 ) = ( k + ( n − 1 ) ∣ 1 λ λ . . . λ 0 k − λ 0 . . . 0 . . . . . . . . . . . . . . . 0 0 0 . . . k − λ ∣ = ( k + ( n − 1 ) λ ) ( k − λ ) n − 1 =\begin{vmatrix} k+(n-1)\lambda & \lambda & \lambda&... & \lambda\\ k+(n-1)\lambda & k &\lambda& ... & \lambda\\ ... & ...&...&...&...\\ k+(n-1)\lambda & \lambda & \lambda & ... & k\\ \end{vmatrix}=(k+(n-1)\lambda)\begin{vmatrix} 1& \lambda & \lambda&... & \lambda\\ 1 & k &\lambda& ... & \lambda\\ ... & ...&...&...&...\\ 1 & \lambda & \lambda & ... & k\\ \end{vmatrix}(将第1行的负1倍依次加到第2,3,...,n行)=(k+(n-1)\begin{vmatrix} 1& \lambda & \lambda&... & \lambda\\ 0 & k-\lambda &0& ... & 0\\ ... & ...&...&...&...\\ 0 & 0 & 0 & ... & k-\lambda\\ \end{vmatrix}=(k+(n-1)\lambda)(k-\lambda)^{n-1} = ​k+(n−1)λk+(n−1)λ...k+(n−1)λ​λk...λ​λλ...λ​............​λλ...k​ ​=(k+(n−1)λ) ​11...1​λk...λ​λλ...λ​............​λλ...k​ ​(将第1行的负1倍依次加到第2,3,...,n行)=(k+(n−1) ​10...0​λk−λ...0​λ0...0​............​λ0...k−λ​ ​=(k+(n−1)λ)(k−λ)n−1

2.5 代数余子式初步

3阶行列式:
∣ A ∣ = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 ( a 22 a 33 − a 23 a 32 ) + a 12 ( a 23 a 31 − a 21 a 33 ) + a 13 ( a 21 a 32 − a 22 a 31 ) = a 11 ( a 22 a 33 − a 23 a 32 ) − a 12 ( a 21 a 33 − a 23 a 31 ) + a 13 ( a 21 a 32 − a 22 a 31 ) |\textbf{A}|=\begin{vmatrix} a_{11}& a_{12} & a_{13}\\ a_{21}& a_{22} & a_{23}\\ a_{31}& a_{32} & a_{33}\\ \end{vmatrix}=a_{11}(a_{22}a_{33}-a_{23}a_{32})+a_{12}(a_{23}a_{31}-a_{21}a_{33})+a_{13}(a_{21}a_{32}-a_{22}a_{31})=a_{11}(a_{22}a_{33}-a_{23}a_{32})-a_{12}(a_{21}a_{33}-a_{23}a_{31})+a_{13}(a_{21}a_{32}-a_{22}a_{31}) ∣A∣= ​a11​a21​a31​​a12​a22​a32​​a13​a23​a33​​ ​=a11​(a22​a33​−a23​a32​)+a12​(a23​a31​−a21​a33​)+a13​(a21​a32​−a22​a31​)=a11​(a22​a33​−a23​a32​)−a12​(a21​a33​−a23​a31​)+a13​(a21​a32​−a22​a31​)
后面课继续记

标签:11,...,13,12,21,22,vmatrix,行列式,代数
From: https://blog.csdn.net/qq_30204431/article/details/141463840

相关文章

  • 信息学奥赛一本通1314:【例3.6】过河卒(Noip2002)
    【题目描述】棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上的某一点有一个对方的马(如C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点,如图3-1中的C点和P1,……,P8,卒不能通过对方马的控制点。棋盘用坐标表示,A点(0,0)、B点(n,......
  • 信息学奥赛一本通1328:【例7.7】光荣的梦想
    【题目描述】Prince对他在这片大陆上维护的秩序感到满意,于是决定启程离开艾泽拉斯。在他动身之前,Prince决定赋予King_Bette最强大的能量以守护世界、保卫这里的平衡与和谐。在那个时代,平衡是个梦想。因为有很多奇异的物种拥有各种不稳定的能量,平衡瞬间即被打破。KB决定求助于......
  • 南沙区信奥赛CSP-J/S 陈老师解题:1350:【例4-11】最短网络(agrinet)
    ​ 【题目描述】农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的帮助。约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了用最小的消费,他想铺设最短的光纤去连接所有的农场。你将得到一......
  • 南沙信息学家教陈老师: 1349:【例4-10】最优布线问题
    ​【题目描述】学校有nn台计算机,为了方便数据传输,现要将它们用数据线连接起来。两台计算机被连接是指它们有数据线连接。由于计算机所处的位置不同,因此不同的两台计算机的连接费用往往是不同的。当然,如果将任意两台计算机都用数据线连接,费用将是相当庞大的。为了节省费用,我们......
  • 软件设计师全套备考系列文章13 -- 数据库:概念、三级模式两级映像、设计过程、数据模型
    软考--软件设计师(13)--数据库:概念、三级模式两级映像、设计过程、数据模型文章目录软考--软件设计师(13)--数据库:概念、三级模式两级映像、设计过程、数据模型前言一、章节考点二、基本概念三、三级模式、两级映像四、设计过程五、数据模型前言考试时间:每年5月、......
  • day13: 第六章 二叉树part01 |二叉树的前序遍历,后序遍历,中序遍历,(递归。层序(广度)跟
    二叉树递归三部曲:1.确定递归函数的参数和返回值。2.确定终止条件3.确定单层递归的逻辑144.二叉树的前序遍历:中左右,递归:classSolution{publicList<Integer>preorderTraversal(TreeNoderoot){List<Integer>res=newArrayList<Integer>();p......
  • 实景三维数字沙盘技术标准【TB0822/T 0013—2023】
    1范围本文件立足当前技术的发展现状,描述了实景三维数字沙盘的定义、沙盘内容、沙盘功能、沙盘成果等技术参数要求,为数字沙盘的建设提供参考依据。适用于城乡规划、工程建设、指挥救援、环境应急、预案演练(消防、公安、武警)、安全生产、园区管理等领域。 2定义实景三维......
  • 133.克隆图
    1.题目描述给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。图中的每个节点都包含它的值 val(int)和其邻居的列表(list[Node])。classNode{publicintval;publicList<Node>neighbors;}测试用例格式:简单起见,每个节点的值都和它的索引相同......
  • 135. 分发糖果(leetcode)
    https://leetcode.cn/problems/candy/description/贪心,策略是确定一侧的正确性,再确定另一侧的正确性,最后综合作为正确答案,其中先确定一侧的正确性是局部最优,确定两侧的正确性的局部最优,且找不到反例就可以推出全局最优答案classSolution{publicintcandy(int[]ra......
  • [COCI2012-2013#1] SNAGA 题解
    前言题目链接:洛谷。题意简述定义\(f(x)\)表示不能整除\(x\)的最小正整数。给出数字\(n\),每次\(n\getsf(n)\),当\(n=2\)时停止。定义\(g(n)\)为这一过程中的数字个数,例如\(g(6)=4\)。给定\(l,r\),求\(\sum\limits_{i=l}^rg(i)\)。\(3\leql\ltr......