环境
- Time 2022-11-16
- WSL-Ubuntu 22.04
- Rust 1.65.0
前言
说明
参考:https://raytracing.github.io/books/RayTracingInOneWeekend.html
目标
不同的材质有不同的散射光线和衰减,这一节将不同的材质进行抽象。
向量的乘法
impl Mul for Vector3 {
type Output = Self;
fn mul(self, other: Vector3) -> Self {
Vector3 {
x: self.x * other.x,
y: self.y * other.y,
z: self.z * other.z,
}
}
}
material.rs
use crate::{
hittable::HitRecord,
ray::Ray,
vector3::{Color, Vector3},
};
// 材质
pub trait Material {
fn scatter(&self, ray: &Ray, record: &HitRecord) -> Option<(Color, Ray)>;
}
pub struct Lambert {
// 衰减
pub albedo: Color,
}
impl Material for Lambert {
fn scatter(&self, _: &Ray, record: &HitRecord) -> Option<(Color, Ray)> {
let mut direction = record.normal + Vector3::random_unit();
if direction.near_zero() {
direction = record.normal;
}
let scattered = Ray::new(record.point, direction);
Some((self.albedo, scattered))
}
}
HitRecord
pub struct HitRecord {
pub point: Point3,
pub normal: Vector3,
pub t: f64,
pub material: Rc<dyn Material>,
}
Sphere
pub struct Sphere {
center: Point3,
radius: f64,
material: Rc<dyn Material>,
}
impl Sphere {
pub fn new(center: Point3, radius: f64, material: Rc<dyn Material>) -> Sphere {
Sphere {
center,
radius,
material,
}
}
fn nearest(&self, ray: &Ray, temp: Temp) -> Option<HitRecord> {
// 找到最近的点
let a = ray.direction().dot(ray.direction());
let mut t = (-temp.b - temp.sqrt) / a;
if t < temp.min || temp.max < t {
t = (-temp.b + temp.sqrt) / a;
if t < temp.min || temp.max < t {
return None;
}
}
let point = ray.at(t);
let normal = (point - self.center) / self.radius;
Some(HitRecord {
t,
point,
normal,
material: Rc::clone(&self.material),
})
}
}
main.rs
use std::rc::Rc;
use camera::Camera;
use hittable::{Hit, World};
use material::{Lambert, Material};
use rand::Rng;
use ray::Ray;
use sphere::Sphere;
use vector3::{Color, Point3};
mod camera;
mod hittable;
mod material;
mod ray;
mod sphere;
mod vector3;
fn main() {
// 图片的比例,和宽高
const WIDTH: u64 = 400;
const HEIGHT: u64 = (WIDTH as f64 / camera::RATIO) as u64;
const SAMPLES_PER_PIXEL: u64 = 100;
const MAX_DEPTH: u64 = 5;
// 相机
let camera = Camera::new();
// 输出图片,第一行输出 P3,表示像素图
let mut content = String::from("P3");
// 输出宽和高,和最大颜色值
content.push_str(&format!("\n{WIDTH} {HEIGHT}\n255\n"));
let lambert: Rc<dyn Material> = Rc::new(Lambert {
albedo: Color::new(0.5, 0.5, 0.5),
});
let world: World = vec![
Box::new(Sphere::new(
Point3::new(0.0, 0.0, -1.0),
0.5,
Rc::clone(&lambert),
)),
Box::new(Sphere::new(
Point3::new(0.0, -100.5, -1.0),
100.0,
Rc::clone(&lambert),
)),
];
let mut rng = rand::thread_rng();
for j in (0..HEIGHT).rev() {
// 进度
eprintln!("Scan lines remaining: {j}");
for i in 0..WIDTH {
let mut color = Color::default();
for _ in 0..SAMPLES_PER_PIXEL {
let random_u: f64 = rng.gen();
let random_v: f64 = rng.gen();
let u = ((i as f64) + random_u) / ((WIDTH - 1) as f64);
let v = ((j as f64) + random_v) / ((HEIGHT - 1) as f64);
color += ray_color(&camera.get_ray(u, v), &world, MAX_DEPTH);
}
content.push_str(&color.format_str(SAMPLES_PER_PIXEL as f64));
}
}
println!("{}", content);
eprintln!("Done.");
}
// 光线的颜色计算
fn ray_color(ray: &Ray, hittable: &dyn Hit, depth: u64) -> Color {
// 超过最大深度,直接变成黑色
if depth == 0 {
return Color::new(0.0, 0.0, 0.0);
}
// 射线命中物体
if let Some(record) = hittable.hit(ray, 0.001, f64::INFINITY) {
// 命中物体根据材料散射光线
return match record.material.scatter(ray, &record) {
Some((attenuation, scattered)) => {
attenuation * ray_color(&scattered, hittable, depth - 1)
}
None => Color::new(0.0, 0.0, 0.0),
};
}
// 射线未命中,射线的单位向量
let unit = ray.direction().unit();
// 因为需要得到上下渐变的背景图,所以需要对 y 进行插值。
let t = 0.5 * (unit.y + 1.0);
// 线性插值,根据不同的光线得到在下面这个范围里的不同的颜色,并且是渐变色。
(1.0 - t) * Color::new(1.0, 1.0, 1.0) + t * Color::new(0.5, 0.7, 1.0)
}
总结
抽象出了材质,下面可以基于材质的抽象,添加不同的材质。