1. Ex-GCD
1.1. 定义
若 \((a, b)=1\),则必然存在整数 \(x\) 使得 \(ax \equiv 1 (\bmod b)\).
即:\(ax+by=\gcd(a, b)\),\(x, y\) 必然有解。
1.2. 裴蜀定理
推论:若 \((a, b)=1\),则必然存在整数 \(x, y\) 满足 \(ax + by = 1\).
裴蜀定理:对于 \(a, b \in \mathbb{Z}\),\(\exists x, y: ax + by = (a, b)\).
证明:记 \(d = (a, b), \space a' = \frac{a}{d}, \space b' = \frac{b}{d}\),
由 Ex-GCD 的推论知存在 \(x, y\) 满足 \(a'x+b'y = 1\).
左右同乘 \(d\),得 \(ax + by = d\).
1.3. 求解
如何求出 \(x, y\)?
定义 \(f(a, b)\):给定 \(a, b\),求出任意一组合法的 \(x, y\).
有基本事实:\(a \bmod b = a - \lfloor \frac{a}{b} \rfloor \times b\).
那么考虑通过 \(f(b, a \bmod b)\) 推出 \(f(a, b)\).
记 \(t = \lfloor \frac{a}{b} \rfloor\),则 \(a \bmod b = a-tb\).
\(f(b, a \bmod b)\) 满足方程 \(bx + (a \bmod b) y = d\),即 \(bx + (a - tb) y = d\).
而 \(f(a, b)\) 需要满足的方程为 \(ax' + by' = d\),令 \(x' = y, \space y' = x - ty\) 即可。
void exgcd(int a, int b, int &x, int &y)
{
if(!b) {x = 1, y = 0; return a;}
exgcd(b, a % b, y, x);
int xx = x, yy = y, t = a / b;
x = yy, y = xx - t * yy;
return;
}
可以证明,即使 \(a, b \le 10^9\),也绝对不会爆 int.
2. 扩展中国剩余定理(Ex-CRT)
形如以下样式的同余方程组:
\[\begin{cases} x \equiv a_1 \pmod{m_1}\\ x \equiv a_2 \pmod{m_2}\\ \dots \\ x \equiv a_n \pmod{m_n} \end{cases} \]考虑合并以下方程组:
\[\begin{cases} x \equiv a_1 \pmod{m_1}, \\ x \equiv a_2 \pmod{m_2}. \end{cases} \]\(x = m_1 \cdot u + a_1 = m_2 \cdot v + a_2\).
\(m_1 \cdot u - m_2 \cdot v = a_2 - a_1 = \gcd(a, b)\).
可以合并出一个新的方程组 \(x \equiv a' \space (\bmod \operatorname{lcm}(m_1, m_2))\).
3. 乘法逆元
3.1. 定义
定义:若 \(ax \equiv 1 \pmod{P}\),则称 \(x\) 为 \(a\) 模 \(P\) 的乘法逆元.
3.2. Wilson 定理
Wilson 定理:给定质数 \(P\),\((P-1)! \equiv -1 \pmod{P}\).
考虑将 \([1, P-1]\) 中的数及逆元两两配对,能配对当且仅当 \(a \ne a^{-1} \pmod{P}\).
即不能配对当且仅当 \(x^2 = 1 \pmod{P}\),只有一个解 \(x = P-1\).
故 \((P-1)! \equiv P - 1 \equiv -1 \pmod{P}\).
3.3. 费马小定理
费马小定理:对于质数 \(P\) 和非 \(0\) 整数 \(a\),\(a^{P-1} \equiv 1 \pmod{P}\).
证明:注意到 \(a, 2a, \ldots, (n-1)a\) 在 \(\bmod P\) 意义下取遍 \([1, P - 1]\) 中所有数,
考虑 \(1 \cdot 2 \cdot 3 \cdots (P - 1) \equiv (1a) \cdot (2a) \cdot (3a) \cdots [(P-1) a]\),
即 \((P - 1)! \equiv a^{P - 1}(P - 1)!\).
由 Wilson 定理得,\(-1 \equiv -1 \cdot a^{P - 1}\).
即 \(a^{P-1} \equiv 1 \pmod{P}\).
由此,\(a^{P - 2} \equiv -1 \pmod{P}\),即为 \(a\) 模 \(P\) 的乘法逆元。
3.4. 欧拉定理
欧拉定理:对于 \((a, m) = 1\),有 \(\varphi(m) \equiv 1 \pmod{m}\).
其中,\(\varphi(m)\) 表示 \([1, m]\) 里和 \(m\) 互质的数的个数。
3.5. 预处理逆元
引入:给定质数 \(P\),多次询问 \(\begin{pmatrix}n \\ m \end{pmatrix} \bmod P\).
\(i! = (i - 1)! \cdot i\),则 \(\frac{1}{(i - 1)!} = \frac{1}{i!} \cdot i\).
注意到 \(\frac{1}{(i - 1)!}\) 和 \(\frac{1}{i!}\) 在 \(\bmod P\) 意义下分别为 \((i - 1)!\) 和 \(i!\) 的逆元,就可以线性预处理阶乘的逆元了。
注意到 \(i = i! \cdot [(i-1)!]^{-1}\),则 \(i^{-1} = \frac{1}{i!} \cdot (i-1)!\).
即可以用阶乘的逆元和阶乘来 \(O(1)\) 计算逆元。
int ifac[N], inv[N], fac[N];
void init(int n)
{
fac[0] = 1;
for(int i= 1; i <= n; i++)
fac[i] = 1ll * fac[i - 1] * i % P;
ifac[n] = ksm(fac[n], P - 2);
for(int i = n; i >= 1; i--)
{
ifac[i - 1] = 1ll * inv[i] * i % P;
inv[i] = 1ll * fac[i - 1] * ifac[i] % P;
}
return;
}
3.6. Lucas 定理
Lucas 定理:\(\begin{pmatrix}n \\ m \end{pmatrix} \equiv \begin{pmatrix}\lfloor \frac{n}{P} \rfloor \\ \lfloor \frac{m}{P} \rfloor \end{pmatrix} \cdot \begin{pmatrix}n \bmod P \\ m \bmod P \end{pmatrix}\pmod{P}\),其中 \(P\) 是质数.
使用 Lucas 求解的时间复杂度:\(O(\log_P n)\)
在 \(P = 2\) 时的描述:\(\begin{pmatrix}n \\ m \end{pmatrix} \equiv [n \operatorname{\&} m = m] \pmod{2}\).
4. BSGS (Baby Step Gaint Step)
离散对数问题:给定 \(a, b, P\),满足 \((a, P) = 1\),求出一个 \(t\) 使得 \(a^t \equiv b \pmod{P}\)(也即求出模 \(P\) 意义下的 \(log_a b\))。
思考:给定 \(P, a\) 和两个数的集合 \(S, T\),找到一组 \(x \in S, y \in T\) 使得 \(xy \equiv a \pmod{P}\).
上式可以化为 \(x \equiv \frac{a}{y}\). 考虑枚举 \(x\) 的所有取值,将它们放入 Hash 表中;再枚举 \(y\) 的所有取值,查询 Hash 表中是否有此值。时间复杂度 \(O(\max\{|S|, |T|\} \log P)\).
回到原题,令 \(B = \lceil \sqrt{P} \rceil\),取 \(S = \{a^i\}, T = \{a^{B\cdot i}\}\) 即可,其中 $ \le i \le B$. 按照上面思考的方法即可解决问题,时间复杂度 \(O(\sqrt{P} \log P)\).
5. Ex-BSGS
在 BSGS 中,要求了 \((a, P) = 1\),若这两数不互质,如何做?
考虑将 \(a, P\) 转化为互质的。
设 \(d = \gcd(a, P)\),则只需找到方程 \(\frac{a}{d} \cdot a^{x-1} \equiv \frac{b}{d} \pmod{ \frac{P}{d}}\) 的解,即为原方程的解。
原方程即为 \(a^{x-1} \equiv \frac{b}{d} \cdot (\frac{a}{d})^{-1} \pmod{\frac{P}{d}}\).
令 \(b' = \frac{b}{d} \cdot (\frac{a}{d})^{-1}\),原方程化为 \(a^{x-1} \equiv b' \pmod{\frac{P}{d}}\).
不断地进行 \((a, P) \to (a, \frac{P}{d})\),直到 \((a, P) = 1\),即变为普通的 BSGS 问题。
6. 阶与原根
模 \(m\) 的阶:最小的 \(t\) 使得 \(x^t \equiv 1 \pmod{m}\).
模 \(m\) 的原根:模 \(m\) 的阶为 \(\varphi(m)\) 的数。
原根的本质:取对数将乘法转化成指数上的加法。
一个数 \(m\) 存在原根当且仅当 \(m = 2, 4, p^{\alpha}, 2p^{\alpha}\),其中 \(p\) 为奇素数。、
如何快速判定一个数是否是原根?
引理:一个数模 \(m\) 的阶如果存在,那它一定是 \(\varphi(m)\) 的约数。
设 \(m \ge 3, \space (g, m) = 1\),则 \(g\) 是模 \(m\) 的原根的充要条件是:对于 \(\varphi(m)\) 的每个素因数 \(p\),都有 \(g^{\frac{\varphi(m)}{p}} \ne 1 \pmod{m}\).
推论:若一个数 \(m\) 有原根,则它原根的个数为 \(\varphi(\varphi(m))\).
7. 例题
7.1. P2480 [SDOI2010] 古代猪文
简要题意:求 \(g^{\sum_{d | n} \begin{pmatrix}n \\ d \end{pmatrix}} \mod P\),其中 \(P = 999911659\),是一个质数。
根据欧拉定理的推论,\(g^{\sum_{d | n} \begin{pmatrix}n \\ d \end{pmatrix}} = g^{\sum_{d | n} \begin{pmatrix}n \\ d \end{pmatrix} \mod (P - 1)}\).
可得 \(P - 1 = 999911658 = 2\times 3\times 4679\times 35617\).
分别计算出 \(\sum_{d | n} \begin{pmatrix}n \\ d \end{pmatrix}\) 对以上四个数取模的结果,记为 \(a_1, a_2, a_3, a_4\).
则有方程组
\[\begin{cases} x \equiv a_1 \pmod{2}, \\ x \equiv a_2 \pmod{3}, \\ x \equiv a_3 \pmod{4679}, \\ x \equiv a_4 \pmod{35617}. \end{cases} \]使用 CRT 解决即可。
标签:frac,pmod,bmod,2024,cdot,pmatrix,Day,ZR,equiv From: https://www.cnblogs.com/Heartquakes/p/18306492