默认 \(n\) 为常数,\(x\) 为自变量。
幂
(前提条件为 \(n \ne 1\),\(n = 1\) 时平凡)
\[n^x = \Delta \left( \dfrac {n^x} {n-1} \right) \]\[\Delta \left( n^x \right) = (n-1) n^x \]下降幂
(前提条件为 \(n \ne -1\),\(n = -1\) 时见调和数部分)
\[x^{\underline n} = \Delta \left( \dfrac {x^{\underline {n+1}}} {n+1}\right) \]\[\Delta \left( x^{\underline n} \right) = n x^{\underline{n-1}} \]\[n^{\underline x} = \Delta \left( \dfrac {n^{\underline x}} {n-x-1}\right) \]\[\Delta \left( n^{\underline x} \right) = (n-x-1) n^{\underline x} \]exp
\[2^x = \Delta \left( 2^x \right) \]二项式系数
\[\binom x n = \Delta \binom x {n+1} \]\[\Delta \binom x n = \binom x {n-1} \]更一般地:
\[\binom {x+m} n = \Delta \binom {x+m} {n+1} \]\[\Delta \binom {x+m} n = \binom {x+m} {n-1} \]注:遇到组合数相关可以尝试 \(\dbinom x n = \dfrac {x^{\underline n}} {n!}\)。