经典找点问题,如果利用保号性是显然的
已知函数\(f(x)=(m+1-x)e^x-\dfrac{1}{2}me^{2x}-2\)
(1)当\(m=2\),讨论\(f(x)\)的单调性
(2)若\(x=0\),是\(f(x)\)的极小值点,求\(m\)的取值范围
解
(1)\(m=2,f(x)=(3-x)e^x-e^{2x}-2\),\(f^{\prime}(x)=e^{x}(2-x)-2e^{2x}=e^x(2-x-2e^x)\)
因\(2-x-2e^x\)单调递减,并且\(f^{\prime}(0)=0\)
则\(f(x)\)在\((-\infty,0)\)上增,\([0,+\infty)\)上减
(2)
\(f^{\prime}(x)=e^x(m-x)-me^{2x}=e^x(m-x-me^x)\)
记\(\varphi(x)=m-x-me^x,\varphi(0)=0\)
\(\varphi^{\prime}(x)=-1-me^x,\varphi^{\prime}(0)=-1-m,\varphi^{\prime}\left(\ln-\dfrac{1}{m}\right)=-1-m\cdot\left(-\dfrac{1}{m}\right)=0\)
Case1 当\(m=-1\)时,\(f^{\prime}(x)=e^x(-1-x+e^x)\geq 0\)
此时没有极值点,舍
Case2 当\(m<-1\)时\(\ln-\dfrac{1}{m}<0\),此时\(\varphi^{\prime}(x)\)单调递增,
则\(\varphi^{\prime}(x)\)在\(\left(-\infty,\ln-\dfrac{1}{m}\right)\)上为负,\(\left(\ln-\dfrac{1}{m},+\infty\right)\)上为正
\(\varphi(x)\)在\(\left(-\infty,\ln-\dfrac{1}{m}\right)\)上为减,\(\left(\ln-\dfrac{1}{m},+\infty\right)\)上增
\(\varphi\left(\ln-\dfrac{1}{m}\right)=m-\ln-\dfrac{1}{m}+1<m+1-\left(1-\dfrac{1}{-\dfrac{1}{m}}\right)=0\)
而\(\varphi(0)=0\),则在\(\left(\ln-\dfrac{1}{m},0\right)\)上负,\((0,+\infty)\)上增
则\(x=0\)是\(f(x)\)的极小值点,合题
Case3 当\(-1<m<0\)时,\(\varphi^{\prime}(0)=-1-m<0\),此时\(\varphi^{\prime}(x)\)单调递增
此时\(\ln-\dfrac{1}{m}>0\),同Case3,
则\(\varphi^{\prime}(x)\)在\(\left(-\infty,\ln-\dfrac{1}{m}\right)\)上为负,\(\left(\ln-\dfrac{1}{m},+\infty\right)\)上为正
\(\varphi(x)\)在\(\left(-\infty,\ln-\dfrac{1}{m}\right)\)上为减,\(\left(\ln-\dfrac{1}{m},+\infty\right)\)上增
从而\(\varphi(x)\)在\(\left(0,\ln-\dfrac{1}{m}\right)\)减,因\(\varphi(0)=0\)
则此时\(x=0\)是\(f(x)\)的极大值点,舍
Case4 当\(m>0\)时,\(\varphi^{\prime}(x)<0\),则\(\varphi(x)\)单调递减
此时\(x=0\)是\(f(x)\)的极大值点,舍
综上\(m<-1\)
标签:infty,right,导数,ln,dfrac,每日,varphi,94,left From: https://www.cnblogs.com/manxinwu/p/18093118