非常精彩的转化!
显然,树是二分图。由 König 定理,我们知道:二分图最小点覆盖等于最大匹配。因此枚举点覆盖 \(S\),则一条边 \((u,v)\) 可以被选择,当且仅当 \(u\in S\lor v\in S\),在所有可以选择的边上跑最小生成树即可。
我采用的是 Kruskal 算法,时间复杂度为 \(O(2^nn^2\log n)\),可能略有卡常,可以使用 Prim 算法做到 \(O(2^nn^2)\)。
// Problem: MST with Matching
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/CF1948G
// Memory Limit: 500 MB
// Time Limit: 6000 ms
//
// Powered by CP Editor (https://cpeditor.org)
//By: OIer rui_er
#include <bits/stdc++.h>
#define rep(x, y, z) for(int x = (y); x <= (z); ++x)
#define per(x, y, z) for(int x = (y); x >= (z); --x)
#define debug(format...) fprintf(stderr, format)
#define fileIO(s) do {freopen(s".in", "r", stdin); freopen(s".out", "w", stdout);} while(false)
#define endl '\n'
using namespace std;
typedef long long ll;
mt19937 rnd(std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now().time_since_epoch()).count());
int randint(int L, int R) {
uniform_int_distribution<int> dist(L, R);
return dist(rnd);
}
template<typename T> void chkmin(T& x, T y) {if(x > y) x = y;}
template<typename T> void chkmax(T& x, T y) {if(x < y) x = y;}
template<int mod>
inline unsigned int down(unsigned int x) {
return x >= mod ? x - mod : x;
}
template<int mod>
struct Modint {
unsigned int x;
Modint() = default;
Modint(unsigned int x) : x(x) {}
friend istream& operator>>(istream& in, Modint& a) {return in >> a.x;}
friend ostream& operator<<(ostream& out, Modint a) {return out << a.x;}
friend Modint operator+(Modint a, Modint b) {return down<mod>(a.x + b.x);}
friend Modint operator-(Modint a, Modint b) {return down<mod>(a.x - b.x + mod);}
friend Modint operator*(Modint a, Modint b) {return 1ULL * a.x * b.x % mod;}
friend Modint operator/(Modint a, Modint b) {return a * ~b;}
friend Modint operator^(Modint a, int b) {Modint ans = 1; for(; b; b >>= 1, a *= a) if(b & 1) ans *= a; return ans;}
friend Modint operator~(Modint a) {return a ^ (mod - 2);}
friend Modint operator-(Modint a) {return down<mod>(mod - a.x);}
friend Modint& operator+=(Modint& a, Modint b) {return a = a + b;}
friend Modint& operator-=(Modint& a, Modint b) {return a = a - b;}
friend Modint& operator*=(Modint& a, Modint b) {return a = a * b;}
friend Modint& operator/=(Modint& a, Modint b) {return a = a / b;}
friend Modint& operator^=(Modint& a, int b) {return a = a ^ b;}
friend Modint& operator++(Modint& a) {return a += 1;}
friend Modint operator++(Modint& a, int) {Modint x = a; a += 1; return x;}
friend Modint& operator--(Modint& a) {return a -= 1;}
friend Modint operator--(Modint& a, int) {Modint x = a; a -= 1; return x;}
friend bool operator==(Modint a, Modint b) {return a.x == b.x;}
friend bool operator!=(Modint a, Modint b) {return !(a == b);}
};
const int N = 20, inf = 0x1f1f1f1f;
int n, c, a[N][N], ans = +inf;
vector<tuple<int, int, int>> G;
struct Dsu {
int fa[N];
void init(int x) {rep(i, 0, x - 1) fa[i] = i;}
int find(int x) {return x == fa[x] ? x : fa[x] = find(fa[x]);}
bool merge(int x, int y) {
x = find(x); y = find(y);
if(x == y) return false;
fa[x] = y;
return true;
}
}dsu;
int kruskal() {
sort(G.begin(), G.end(), [](auto x, auto y) {
return get<2>(x) < get<2>(y);
});
dsu.init(n);
int rem = n, mst = 0;
for(auto [u, v, w] : G) {
if(dsu.merge(u, v)) {
--rem;
mst += w;
}
}
return rem == 1 ? mst : +inf;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> c;
rep(i, 0, n - 1) rep(j, 0, n - 1) cin >> a[i][j];
rep(S, 1, (1 << n) - 1) {
G.clear();
rep(i, 0, n - 1) {
rep(j, i + 1, n - 1) {
if(((S >> i) & 1) || ((S >> j) & 1)) {
if(a[i][j]) {
G.emplace_back(i, j, a[i][j]);
}
}
}
}
chkmin(ans, kruskal() + c * __builtin_popcount(S));
}
cout << ans << endl;
return 0;
}
标签:CF1948G,return,int,题解,MST,operator,Modint,friend,mod
From: https://www.cnblogs.com/ruierqwq/p/18092428/CF-1948G