特别典型的一道端点效应与放缩找点
已知\(f(x)=m(x-1)^2-2x+2\ln x,m>2\)
(1)证明:函数\(f(x)\)存在单调递减区间,并求出该函数单调递减区间\((a,b)\)的长度\(b-a\)的取值范围
(2)当\(x\geq 1\)时,\(f(x)\leq 2xe^{x-1}-4x\)恒成立,求\(m\)的取值范围.
解
(1)\(f^{\prime}(x)=2m(x-1)-2+\dfrac{2}{x}=2\cdot\dfrac{mx^2-(1+m)x+1}{x}=2\cdot\dfrac{(mx-1)(x-1)}{x}\)
\(f^{\prime}(x)=0\)得\(x_1=\dfrac{1}{m},x_2=1\),因\(m>2\),则\(0<x_1<x_2\)
从而得到\(f(x)\)在\((x_1,x_2)\)上单调递减
则\(a=\dfrac{1}{m},b=1\)
则\(b-a=1-\dfrac{1}{m}\in\left(\dfrac{1}{2},1\right)\)
(2) 原不等式为\(m(x-1)^2-2x+2\ln x-2xe^{x-1}+4x\leq 0\)
记\(\varphi(x)=m(x-1)^2+2\ln x-2xe^{x-1}+2x\),发现\(\varphi(1)=0\)
\(\varphi^{\prime}(x)=2m(x-1)+\dfrac{2}{x}-2e^{x-1}(1+x)+2\),发现\(\varphi^{\prime}(1)=0\)
\(\varphi^{\prime\prime}(x)=2m-\dfrac{2}{x^2}-2e^{x-1}(x+2)\),
\(\varphi^{\prime\prime\prime}(x)=\dfrac{4}{x^3}-2e^{x-1}(x+3)\),其是单调递减的
则\(\varphi^{\prime\prime\prime}(x)<\varphi^{\prime\prime\prime}(1)=-4<0\)
则\(\varphi^{\prime\prime}(x)\)单调递减
并且\(\varphi^{\prime\prime}(1)=2m-8\)
Case1 若\(m>4\)时,\(\varphi^{\prime\prime}(1)>0\)
因\(\varphi^{\prime\prime}(x)<8-\dfrac{2}{x^2}-2x(x+2)=8-\dfrac{2}{x^2}-2x^2-4x\)
取\(x=2\),有\(\varphi^{\prime\prime}(2)<-\dfrac{17}{2}<0\)
则由零点存在定理,在\(x\in(1,2)\)中,一定存在\(x_0\),使得\(\varphi^{\prime\prime}(x_0)=0\)
从而在\(x\in(1,x_0)\)上,\(\varphi^{\prime}(x)\)单调递增,则\(\varphi^{\prime}(x)>0\)
从而在\(x\in(1,x_0)\)上,\(\varphi(x)>\varphi(1)=0\),不合题
Case2 若\(m\leq 4\)时,\(\varphi^{\prime}(x)<\varphi^{\prime\prime}(1)<0\)
则\(\varphi^{\prime}(x)\)单调递减,从而\(\varphi^{\prime}(x)<\varphi^{\prime}(1)=0\)
则\(\varphi(x)\)单调递减,从而\(\varphi(x)<\varphi(1)=0\),合题
综上\(m\in(2,4]\)
标签:prime,导数,46,dfrac,每日,varphi,2m,递减,单调 From: https://www.cnblogs.com/manxinwu/p/17995127