-
行列式的补行补列技巧
-
扰动法
对于二阶分块矩阵 \(\left[\begin{matrix}A&B \\ C&D\end{matrix}\right]\),若 \(AC = CA\),则 \(\left|\begin{matrix}A&B \\ C&D\end{matrix}\right| = |AD-CB|\)。
证明:若 \(A\) 可逆,则 \(\left|\begin{matrix}A&B \\ C&D\end{matrix}\right| = |A||D-CA^{-1}B| = |AD-ACA^{-1}B| = |AD-CAA^{-1}B| = |AD-CB|\)。
否则令 \(A'=tI+A\),则 \(A'C = CA'\),而 \(|A'|\) 是一个关于 \(t\) 的多项式,那么 \(|A'|=0\) 只有有限个根。所以在 \(0\) 的附近 \(|A'| \neq 0\),所以此时 \(\left|\begin{matrix}A'&B \\ C&D\end{matrix}\right| = |A'D-CB|\),所以 \(t \to 0\) 时 \(\left|\begin{matrix}A&B \\ C&D\end{matrix}\right| = |AD-CB|\)。
-
矩阵的迹
例题 1:求证:不存在 \(n\) 阶方阵 \(A, B\),使得 \(AB - BA = I_n\)。
证明:\(\forall A, B, \mathrm{tr}(AB - BA) = \mathrm{tr}(AB) - \mathrm{tr}(BA) = 0\),而 \(\mathrm {tr}(I_n) = n\)。
例题 2:设 \(A\) 为 \(n\) 阶方阵,证明 \(A\) 为实对称矩阵当且仅当 \(AA^T = A^2\)。
证明:
充分性:若 \(A\) 为实对称矩阵,则 \(A^T = A\),\(\therefore AA^T = A^2\)。
必要性:要证 \(A - A^T = O\),只需证 \(\mathrm{tr}((A-A^T)(A-A^T)^T) = 0\)。
而 \((A-A^T)(A-A^T)^T = (A-A^T)(A^T - A) = AA^T - A^2 - (A^T)^2 + A^TA = A^TA - (A^T)^2\),所以 \(\mathrm {tr}((A - A^T)(A - A^T)^T) = \mathrm{tr}(A^TA) - \mathrm{tr}((A^T)^2) = \mathrm{tr}(AA^T) - \mathrm{tr}(A^2) = 0\)。