首页 > 其他分享 >基础入门:“炼丹师”——深度学习训练技巧

基础入门:“炼丹师”——深度学习训练技巧

时间:2022-10-10 12:11:05浏览次数:55  
标签:初始化 技巧 训练 梯度 weight 炼丹 学习 数据 入门


计算机视觉研究院专栏

作者:Edison_G

深度学习已经成为解决许多具有挑战性的现实世界问题的方法。对目标检测,语音识别和语言翻译来说,这是迄今为止表现最好的方法。许多人将深度神经网络(DNNs)视为神奇的黑盒子,我们放进去一堆数据,出来的就是我们的解决方案!事实上,事情没那么简单。


在设计和应用DNN到一个特定的问题上可能会遇到很多挑战。为了达到现实世界应用所需的性能标准,对数据准备,网络设计,训练和推断等各个阶段的正确设计和执行至关重要。

今天给大家讲讲DNN(深度神经网络)在训练过程中遇到的一些问题,然后我们应该怎么去注意它,并学会怎么去训练它。

1、数据集的准备:

必须要保证大量、高质量且带有准确标签的数据,没有该条件的数据,训练学习很困难的(但是最近我看了以为作者写的一篇文章,说明不一定需要大量数据集,也可以训练的很好,有空和大家来分享其思想---很厉害的想法);

2、数据预处理

这个不多说,就是0均值和1方差化,其实还有很多方法;

3、Minibatch

这个有时候还要根据你的硬件设备而定,一般建议用128,8这组,但是128,1也很好,只是效率会非常慢,注意的是:千万不要用过大的数值,否则很容易过拟合;

4、梯度归一化

其实就是计算出来梯度之后,要除以Minibatch的数量,这个可以通过阅读源码得知(我之前有写过SGD);

5、学习率:

①  一般都会有默认的学习率,但是刚开始还是用一般的去学习,然后逐渐的减小它;

②  一个建议值是0.1,适用于很多NN的问题,一般倾向于小一点;但是如果对于的大数据,何凯明老师也说过,要把学习率调到很小,他说0.00001都不为过(如果记得不错,应该是这么说的);

③  一个对于调度学习率的建议:如果在验证集上性能不再增加就让学习率除以2或者5,然后继续,学习率会一直变得很小,到最后就可以停止训练了;

④  很多人用的一个设计学习率的原则就是监测一个比率(每次更新梯度的norm除以当前weightnorm),如果这个比率在10e-3附近,且小于这个值,学习会很慢,如果大于这个值,那么学习很不稳定,由此会带来学习失败。

6、验证集的使用:

使用验证集,可以知道什么时候开始降低学习率和什么时候停止训练;

7、weight初始化:

①  如果你不想繁琐的话,直接用0.02*randn(num_params)来初始化,当然别的值也可以去尝试;

②  如果上面那个建议不太好使,那么就依次初始化每一个weight矩阵用init_scale / sqrt(layer_width) * randninit_scale可以被设置为0.1或者1

③  初始化参数对结果的影响至关重要,要引起重视;

④  在深度网络中,随机初始化权重,使用SGD的话一般处理的都不好,这是因为初始化的权重太小了。这种情况下对于浅层网络有效,但是当足够深的时候就不行,因为weight更新的时候,是靠很多weight相乘的,越乘越小,类似梯度消失的意思。

8、RNN&&LSTM(这方面没有深入了解,借用别人的意思):

如果训练RNN或者LSTM,务必保证gradient的norm被约束在15或者5(前提还是要先归一化gradient),这一点在RNNLSTM中很重要;

9、梯度检查:

检查下梯度,如果是你自己计算的梯度;如果使用LSTM来解决长时依赖的问题,记得初始化bias的时候要大一点;

10、数据增广:

尽可能想办法多的扩增训练数据,如果使用的是图像数据,不妨对图像做一点扭转,剪切,分割等操作来扩充数据训练集合;

11、dropout:(先空着,下次我要单独详细讲解Dropout)

12、评价结果:

评价最终结果的时候,多做几次,然后平均一下他们的结果。


补充:


1、选择优化算法  

传统的随机梯度下降算法虽然适用很广,但并不高效,最近出现很多更灵活的优化算法,例如Adagrad、RMSProp等,可在迭代优化的过程中自适应的调节学习速率等超参数,效果更佳;

2、参数设置技巧  

无论是多核CPU还是GPU加速,内存管理仍然以字节为基本单元做硬件优化,因此将参数设定为2的指数倍,如64,128,512,1024等,将有效提高矩阵分片、张量计算等操作的硬件处理效率;

3、正则优化  

除了在神经网络单元上添加传统的L1/L2正则项外,Dropout更经常在深度神经网络应用来避免模型的过拟合。初始默认的0.5的丢弃率是保守的选择,如果模型不是很复杂,设置为0.2就可以;

4、其他方法 

除了上述训练调优的方法外,还有其他一些常用方法,包括:使用mini-batch learning方法、迁移训练学习、打乱训练集顺序、对比训练误差和测试误差调节迭代次数、日志可视化观察等等。


© The Ending



计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

基础入门:“炼丹师”——深度学习训练技巧_数据

扫码关注

计算机视觉研究院

公众号IDComputerVisionGzq

学习群扫码在主页获取加入方式

标签:初始化,技巧,训练,梯度,weight,炼丹,学习,数据,入门
From: https://blog.51cto.com/u_15726357/5743066

相关文章

  • 谷粒商城-elasticsearch入门
    Elasticsearch简介1概念Elasticsearch是一个分布式、RESTful风格的搜索和数据分析引擎,能够解决不断涌现出的各种用例。作为ElasticStack的核心,它集中存储您的数据......
  • MatrixOne从入门到实践05——数据类型介绍
    MatrixOne从入门到实践——数据类型介绍MatrixOne的数据类型是和MySQL数据类型定义一致,可以参考:https://dev.mysql.com/doc/refman/8.0/en/data-types.html在MatrixOne建......
  • MatrixOne从入门到实战06——视图实践
    MatrixOne从入门到实战——视图实践MatrixOne也支持视图功能,且其与MySQL中的视图概念及语法非常类似。MatrixOne的视图也是一种虚拟存在的表,其行和列的数据来自定义视图......
  • MatrixOne 从入门到实践07——TPCH性能测试
    MatrixOne从入门到实践——TPCH性能测试TPCBenchmark™H(TPC-H)是决策支持基准。它由一套面向业务的即时查询(ad-hoc)和并发数据修改组成。选择查询和填充数据库的数据具有......
  • MatrixOne从入门到实践08——SSB性能测试
    MatrixOne从入门到实践——SSB性能测试SSB星型模式基准测试是OLAP数据库性能测试的常用场景,通过本篇教程,您可以了解到如何在MatrixOne中实现SSB测试。测试环境......
  • MatrixOne从入门到实践09——MO-Tester
    MatrixOne从入门到实践——MO-Tester从0.5.0版本开始,MatrixOne引入了一个自动测试框架MO-Tester。MO-Tester测试框架,也可以称作为测试器,是通过SQL测试MatrixOne......
  • MatrixOne从入门到实践10——物联网平台架构升级
    MatrixOne从入门到实践——物联网平台架构升级公司介绍西安天能软件科技有限责任公司,成立于2018年,公司自成立起集中力量精心打造物联网平台,拥有集自主研发、终端生产、销......
  • MatrixOne从入门到实战04——MatrixOne的连接和建表
    MatrixOne从入门到实战——MatrixOne的连接和建表前景回顾前几篇文章,为大家介绍了MatrixOne这个产品,以及编译、部署MatrixOne的服务。直通车:MatrixOne从入门到实践——......
  • MySQL入门及面试
    MySQL一、基础1.SQL语句入门select*fromAinnerjoinBonB.id=A.idgroupbyB.idhavingB.id>10whereB.oid!=5orderbyB.iddesclimit5;如上,瞎写了一......
  • HMdubbo4【dubbo快速入门】
    框架提供者和消费者理论上是两个项目,此处用同一项目中两个模块进行模拟实现步骤①创建服务提供者Provider模块②创建服务消费者Consumer模块③在服务提供者模块......