首页 > 其他分享 >Predicting gene expression from histone modifications with self-attention based neural networks and

Predicting gene expression from histone modifications with self-attention based neural networks and

时间:2023-12-08 10:04:36浏览次数:45  
标签:modifications based histone attention cell learning gene expression

Predicting gene expression from histone modifications with self-attention based neural networks and transfer learning

Yuchi Chen 1Minzhu Xie 1Jie Wen 1 Affiliations  Sign in Free PMC article

Abstract

It is well known that histone modifications play an important part in various chromatin-dependent processes such as DNA replication, repair, and transcription. Using computational models to predict gene expression based on histone modifications has been intensively studied. However, the accuracy of the proposed models still has room for improvement, especially in cross-cell lines gene expression prediction. In the work, we proposed a new model TransferChrome to predict gene expression from histone modifications based on deep learning. The model uses a densely connected convolutional network to capture the features of histone modifications data and uses self-attention layers to aggregate global features of the data. For cross-cell lines gene expression prediction, TransferChrome adopts transfer learning to improve prediction accuracy. We trained and tested our model on 56 different cell lines from the REMC database. The experimental results show that our model achieved an average Area Under the Curve (AUC) score of 84.79%. Compared to three state-of-the-art models, TransferChrome improves the prediction performance on most cell lines. The experiments of cross-cell lines gene expression prediction show that TransferChrome performs best and is an efficient model for predicting cross-cell lines gene expression.

Keywords: convolutional neural network; deep learning; gene expression; histone modification; transfer learning.

标签:modifications,based,histone,attention,cell,learning,gene,expression
From: https://www.cnblogs.com/wangprince2017/p/17884527.html

相关文章

  • Predict potential miRNA-disease associations based on bounded nuclear norm regul
    PredictpotentialmiRNA-diseaseassociationsbasedonboundednuclearnormregularizationYidongRao 1, MinzhuXie 1, HaoWang 1Affiliations expandPMID: 36072658 PMCID: PMC9441603 DOI: 10.3389/fgene.2022.978975 SigninFreePMCa......
  • LPI-IBWA: Predicting lncRNA-protein interactions based on an improved Bi-Random
    LPI-IBWA:PredictinglncRNA-proteininteractionsbasedonanimprovedBi-RandomwalkalgorithmMinzhuXie 1, RuijieXie 2, HaoWang 3Affiliations expandPMID: 37972912 DOI: 10.1016/j.ymeth.2023.11.007 SigninAbstractManystudies......
  • B4185. LPI-IBWA:Predicting lncRNA-protein Interactions Based on Improved Bi-Ran
    B4185.LPI-IBWA:PredictinglncRNA-proteinInteractionsBasedonImprovedBi-RandomWalkAlgorithmMinzhuXie1,HaoWang1 andRuijieXi11HunanNormalUniversityAbstract:Manystudieshaveshownthatlong-chainnoncodingRNAs(lncRNAs)areinvolvedinav......
  • The kexec-based Crash Dumping Solution (翻译 by chatgpt)
    原文:https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html这份文档包括概述、设置、安装和分析信息。概述Kdump使用kexec快速引导到一个转储捕获内核,每当需要对系统内核的内存进行转储(例如系统发生崩溃)时。系统内核的内存镜像在重启过程中得以保留,并且可以......
  • GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models
    前置知识:【EM算法深度解析-CSDNApp】http://t.csdnimg.cn/r6TXMMotivation目前的语义分割通常采用判别式分类器,然而这存在三个问题:这种方式仅仅学习了决策边界,而没有对数据分布进行建模;每个类仅学习一个向量,没有考虑到类内差异;OOD数据效果不好。生成式分类器通过对联合分布......
  • RBAC权限控制 (Role Based Access Control)
    ACL和RBAC对比之前的ACL权限控制是直接给用户分配权限的。而RBAC是这样的:RBAC是先分开角色,然后把角色分给指定的用户通过在用户和权限之间多加一层“角色”来做权限管理给角色分配权限,然后给用户分配角色这样有什么好处呢?  比如说:管理员有a、b、c3个权限,而张三李四......
  • 2023 - LauraHughes - A Novel Method to Determine Probabilistic Tsunami Hazard Us
    概要这篇文章主要讨论了使用基于物理的合成地震目录进行海啸危险评估的首次尝试,并展示了在新西兰海岸附近,近场地震海啸可以产生高达28米的最大海浪高度。文章介绍了使用CornellMulti-gridCoupledTsunami模型(COMCOT)进行海啸生成和传播模拟的方法,并对模拟结果进行了分析。文章还......
  • LncDLSM: Identification of Long Non-coding RNAs with Deep Learning-based Sequenc
    关键词:作者:期刊:IEEEJournalofBiomedicalandHealthInformatics年份:2023论文原文:https://doi.org/10.1101/2022.09.02.506180主要内容1问题:长链非编码RNA(LncRNAs)在调控基因表达和其他生物过程中起着至关重要的作用。区分lncRNA和蛋白质编码转录本(PCTs)有助于研究人员深......
  • Web 应用中显示页面字体使用的 font-based icons 技术讲解
    在前端Web应用开发中,采用字体图标(font-basedicons)的方法是一种常见的技术,它允许开发者使用字体文件来呈现图标,而不是使用传统的图像文件。这种方法的优势在于它提供了一种灵活、轻量级且易于管理的方式来集成和使用图标,同时减少了HTTP请求和提高性能。Font-basedicons的实现通......
  • ENTROFORMER: A TRANSFORMER-BASED ENTROPY MODEL基于transformer的熵模型
    目录简介模型核心代码性能实验简介\(\quad\)由于cnn在捕获全局依赖关系方面效率低,因此该文章提出了基于tansformer的熵模型——Entoformer;并针对图像压缩进行了top-kself-attention和adiamondrelativepositionencoding的优化;同时使用双向上下文模型加快解码。模型核心代......