首页 > 其他分享 >LPI-IBWA: Predicting lncRNA-protein interactions based on an improved Bi-Random walk algorithm

LPI-IBWA: Predicting lncRNA-protein interactions based on an improved Bi-Random walk algorithm

时间:2023-12-08 09:56:14浏览次数:43  
标签:improved algorithm interactions Random IBWA LPI lncRNA protein

LPI-IBWA: Predicting lncRNA-protein interactions based on an improved Bi-Random walk algorithm

Minzhu Xie 1Ruijie Xie 2Hao Wang 3 Affiliations  Sign in

Abstract

Many studies have shown that long-chain noncoding RNAs (lncRNAs) are involved in a variety of biological processes such as post-transcriptional gene regulation, splicing, and translation by combining with corresponding proteins. Predicting lncRNA-protein interactions is an effective approach to infer the functions of lncRNAs. The paper proposes a new computational model named LPI-IBWA. At first, LPI-IBWA uses similarity kernel fusion (SKF) to integrate various types of biological information to construct lncRNA and protein similarity networks. Then, a bounded matrix completion model and a weighted k-nearest known neighbors algorithm are utilized to update the initial sparse lncRNA-protein interaction matrix. Based on the updated lncRNA-protein interaction matrix, the lncRNA similarity network and the protein similarity network are integrated into a heterogeneous network. Finally, an improved Bi-Random walk algorithm is used to predict novel latent lncRNA-protein interactions. 5-fold cross-validation experiments on a benchmark dataset showed that the AUC and AUPR of LPI-IBWA reach 0.920 and 0.736, respectively, which are higher than those of other state-of-the-art methods. Furthermore, the experimental results of case studies on a novel dataset also illustrated that LPI-IBWA could efficiently predict potential lncRNA-protein interactions.

Keywords: Protein; Similarity kernel fusion; Weighted k-nearest known neighbors; lncRNA; lncRNA-protein interactions.

标签:improved,algorithm,interactions,Random,IBWA,LPI,lncRNA,protein
From: https://www.cnblogs.com/wangprince2017/p/17884520.html

相关文章

  • [ARC165E] Random Isolation 题解
    题目链接点击打开链接题目解法略有些套路的概率题,不过中间的把操作序列看成排列的操作还是很妙的首先套路的考虑期望的线性性,有两个方式:把贡献放在点上或点集上,这里采用后面的方式做对于每一个树上的集合\(S\),假设大小为\(n\),相邻的点为\(m\)考虑这个集合独立的限制为:相......
  • B4185. LPI-IBWA:Predicting lncRNA-protein Interactions Based on Improved Bi-Ran
    B4185.LPI-IBWA:PredictinglncRNA-proteinInteractionsBasedonImprovedBi-RandomWalkAlgorithmMinzhuXie1,HaoWang1 andRuijieXi11HunanNormalUniversityAbstract:Manystudieshaveshownthatlong-chainnoncodingRNAs(lncRNAs)areinvolvedinav......
  • Tightly Secure Lattice Identity-Based Signature in the Quantum Random Oracle Mod
    Abstract.Wepresentaquantumlysecureidentity-basedsignatureschemebasedonthestandardshortintegersolutionproblem,featuringtightsecurityreductionsinthequantumandclassicrandomoraclemodels.Theschemehasshortsignatures.Eachsignat......
  • FPGA入门笔记007_A——按键消抖模块设计与验证(状态机、$random、仿真模型、task语法)
    实验现象:每次按下按键0,4个LED显示状态以二进制加法格式加1。每次按下按键1,4个LED显示状态以二进制加法格式减1。知识点:1、testbench中随机数发生函数$random的使用;2、仿真模型的概念1、按键波形分析:按键未按,FPGA管脚检测到高电平。按键按下,FPGA管脚检测到低电平。2、设......
  • C++随机数random库 介绍及应用
    一、摘要随机数可以应用在很多场景下如游戏抽卡、抽奖、场景生成、洗牌,歌曲app中的随机播放,社交app中的匹配等以及随机化算法。以下是针对C中随机函数rand、C++random库使用的总结,以及一些随机应用例子二、C/C++中的rand函数使用时需要引入头文件<stdlib.h>该函数返回一个......
  • java基础学习:random随机数,random案例
    1.Random使用步骤:  packagecom.itheima.Random;importjava.util.Random;publicclassRandom1{publicstaticvoidmain(String[]args){Randomrandom=newRandom();for(inti=1;i<=10;i++){intdata=random.nextInt(1......
  • [ABC277G] Random Walk to Millionaire 题解
    题目链接点击打开链接题目解法首先\(O(n^3)\)的\(dp\)是显然的,令\(f_{i,j,k}\)为第\(i\)步在\(j\),当前等级为\(k\)的\([i,n]\)步获得钱数的期望,转移枚举出边即可一个很妙的优化是:贡献都是\(k^2\)的形式,所以我们考虑维护\(k\)的\(0,1,2\)次幂,即\(\sum,\sum......
  • 神经网络入门篇:详解随机初始化(Random+Initialization)
    当训练神经网络时,权重随机初始化是很重要的。对于逻辑回归,把权重初始化为0当然也是可以的。但是对于一个神经网络,如果把权重或者参数都初始化为0,那么梯度下降将不会起作用。来看看这是为什么。有两个输入特征,\(n^{[0]}=2\),2个隐藏层单元\(n^{[1]}\)就等于2。因此与一个隐藏层......
  • 【4.0】常用模块之random模块
    【一】导入模块importrandom【二】随机小数【1】默认区间的小数(random)大于0且小于1之间的小数importrandom#默认是大于0且小于1之间的小数res=random.random()print(res)#0.24512653841495302【2】指定区间的小数(uniform)importrandom#指定为0到......
  • 随机森林(Random Forest)
    随机森林(RandomForest)是一种强大的集成学习算法,通过构建多个决策树,并结合它们的预测结果来提高整体模型的性能和鲁棒性。以下是随机森林的详细解释:随机森林的构建过程:Bootstrap抽样:对于给定的包含N个样本的原始数据集,进行有放回的随机抽样,构造一个新的样本集,大小也为N。......