首页 > 其他分享 >B4185. LPI-IBWA:Predicting lncRNA-protein Interactions Based on Improved Bi-Random Walk Algorithm

B4185. LPI-IBWA:Predicting lncRNA-protein Interactions Based on Improved Bi-Random Walk Algorithm

时间:2023-12-08 09:03:03浏览次数:46  
标签:lncRNA Algorithm similarity Random IBWA LPI Based protein

B4185. LPI-IBWA:Predicting lncRNA-protein Interactions Based on Improved

Bi-Random Walk Algorithm

Minzhu Xie1, Hao Wang1 and Ruijie Xi1

1Hunan Normal University

Abstract:

Many studies have shown that long-chain noncoding RNAs (lncRNAs) are involved in a variety of biological

processes such as post-transcriptional gene regulation, splicing, and translation by combining with

corresponding proteins. Predicting lncRNA-protein interactions is an effective approach to infer the functions

of lncRNAs.The paper proposes a new computational model named LPI-IBWA. At first, LPI-IBWA uses

similarity kernel fusion (SKF) to integrate various types of biological information to construct lncRNA and

protein similarity networks. Then, a bounded matrix completion model and a weighted k-nearest known

neighbors algorithm are utilized to update the values for the potential interaction entries in the initial

lncRNA-protein interaction matrix. Based on the updated lncRNA-protein interaction matrix, the lncRNA

similarity network and the protein similarity network are integrated into a heterogeneous network. Finally, a

Bi-Random walk algorithm is used to predict novel latent lncRNA-protein interactions. 5-fold cross-validation

experiments on a benchmark dataset show that the AUC and AUPR of LPI-IBWA are 0.920 and 0.736,

respectively, which are higher than those of other state-of-the-art methods. Furthermore, the experimental

results of case studies on a novel dataset also illustrate that LPI-IBWA could efficiently predict potential

lncRNA-protein interactions.

 

标签:lncRNA,Algorithm,similarity,Random,IBWA,LPI,Based,protein
From: https://www.cnblogs.com/wangprince2017/p/17884398.html

相关文章

  • Tightly Secure Lattice Identity-Based Signature in the Quantum Random Oracle Mod
    Abstract.Wepresentaquantumlysecureidentity-basedsignatureschemebasedonthestandardshortintegersolutionproblem,featuringtightsecurityreductionsinthequantumandclassicrandomoraclemodels.Theschemehasshortsignatures.Eachsignat......
  • FPGA入门笔记007_A——按键消抖模块设计与验证(状态机、$random、仿真模型、task语法)
    实验现象:每次按下按键0,4个LED显示状态以二进制加法格式加1。每次按下按键1,4个LED显示状态以二进制加法格式减1。知识点:1、testbench中随机数发生函数$random的使用;2、仿真模型的概念1、按键波形分析:按键未按,FPGA管脚检测到高电平。按键按下,FPGA管脚检测到低电平。2、设......
  • C++随机数random库 介绍及应用
    一、摘要随机数可以应用在很多场景下如游戏抽卡、抽奖、场景生成、洗牌,歌曲app中的随机播放,社交app中的匹配等以及随机化算法。以下是针对C中随机函数rand、C++random库使用的总结,以及一些随机应用例子二、C/C++中的rand函数使用时需要引入头文件<stdlib.h>该函数返回一个......
  • java基础学习:random随机数,random案例
    1.Random使用步骤:  packagecom.itheima.Random;importjava.util.Random;publicclassRandom1{publicstaticvoidmain(String[]args){Randomrandom=newRandom();for(inti=1;i<=10;i++){intdata=random.nextInt(1......
  • [ABC277G] Random Walk to Millionaire 题解
    题目链接点击打开链接题目解法首先\(O(n^3)\)的\(dp\)是显然的,令\(f_{i,j,k}\)为第\(i\)步在\(j\),当前等级为\(k\)的\([i,n]\)步获得钱数的期望,转移枚举出边即可一个很妙的优化是:贡献都是\(k^2\)的形式,所以我们考虑维护\(k\)的\(0,1,2\)次幂,即\(\sum,\sum......
  • 神经网络入门篇:详解随机初始化(Random+Initialization)
    当训练神经网络时,权重随机初始化是很重要的。对于逻辑回归,把权重初始化为0当然也是可以的。但是对于一个神经网络,如果把权重或者参数都初始化为0,那么梯度下降将不会起作用。来看看这是为什么。有两个输入特征,\(n^{[0]}=2\),2个隐藏层单元\(n^{[1]}\)就等于2。因此与一个隐藏层......
  • warning: Signature not supported. Hash algorithm SHA1 not available 问题解决
    在使用RockyLinux安装服务的时候碰到此问题,记录下解决方法update-crypto-policies--setLEGACY参考资料https://www.redhat.com/en/blog/rhel-security-sha-1-package-signatures-distrusted-rhel-9......
  • 【4.0】常用模块之random模块
    【一】导入模块importrandom【二】随机小数【1】默认区间的小数(random)大于0且小于1之间的小数importrandom#默认是大于0且小于1之间的小数res=random.random()print(res)#0.24512653841495302【2】指定区间的小数(uniform)importrandom#指定为0到......
  • Princeton Algorithms, Part I week3 Quick Sort
    QuickSort今天学习quicksort,quicksort的基本思想是有一个数组,先shuffle以后,保证数组的item位置是均匀分布的,选择一个item然后,把所有比这个item大的放在item右边,所有比这个item小的放在左右,然后递归的进行这个操作,如下图所示 这里面的partition部分如何实现呢?首先定义两个指......
  • (段设期中复习) Great Ideas in Algorithm Analysis: Midterm Review
    DistanceAlgorithmsBasicsamplinglemma:Let\(S_1,\dots,S_n\subset[n]\)besetsofsizeatleast\(D\),thenrandomlychoose\(c(n/D)\logn\)elementswillmakeeach\(S_i\)containatleastoneelement.2-AdditiveApproximationofAPSPS......