首页 > 其他分享 >Predict potential miRNA-disease associations based on bounded nuclear norm regularization

Predict potential miRNA-disease associations based on bounded nuclear norm regularization

时间:2023-12-08 10:00:47浏览次数:44  
标签:associations regularization based nuclear disease potential miRNA norm

Predict potential miRNA-disease associations based on bounded nuclear norm regularization

Yidong Rao 1Minzhu Xie 1Hao Wang 1 Affiliations  Sign in Free PMC article

Abstract

Increasing evidences show that the abnormal microRNA (miRNA) expression is related to a variety of complex human diseases. However, the current biological experiments to determine miRNA-disease associations are time consuming and expensive. Therefore, computational models to predict potential miRNA-disease associations are in urgent need. Though many miRNA-disease association prediction methods have been proposed, there is still a room to improve the prediction accuracy. In this paper, we propose a matrix completion model with bounded nuclear norm regularization to predict potential miRNA-disease associations, which is called BNNRMDA. BNNRMDA at first constructs a heterogeneous miRNA-disease network integrating the information of miRNA self-similarity, disease self-similarity, and the known miRNA-disease associations, which is represented by an adjacent matrix. Then, it models the miRNA-disease prediction as a relaxed matrix completion with error tolerance, value boundary and nuclear norm minimization. Finally it implements the alternating direction method to solve the matrix completion problem. BNNRMDA makes full use of available information of miRNAs and diseases, and can deals with the data containing noise. Compared with four state-of-the-art methods, the experimental results show BNNRMDA achieved the best performance in five-fold cross-validation and leave-one-out cross-validation. The case studies on two complex human diseases showed that 47 of the top 50 prediction results of BNNRMDA have been verified in the latest HMDD database.

Keywords: bounded nuclear norm regularization; disease; matrix completion; miRNA; miRNA-disease associations.

 

陈兴,Zhou, Chi,Wang, Chun-Chun,赵岩.Predicting potential small molecule-miRNA associations based on bounded nuclear norm regularization,2021,卷: 22期: 6 

标签:associations,regularization,based,nuclear,disease,potential,miRNA,norm
From: https://www.cnblogs.com/wangprince2017/p/17884547.html

相关文章

  • LDAEXC: LncRNA-Disease Associations Prediction with Deep Autoencoder and XGBoost
    LDAEXC:LncRNA-DiseaseAssociationsPredictionwithDeepAutoencoderandXGBoostClassifier. 作者: LuCuihong; XieMinzhu作者背景: CollegeofInformationScienceandEngineering,HunanNormalUniversity,Changsha,China.; CollegeofInformation......
  • LPI-IBWA: Predicting lncRNA-protein interactions based on an improved Bi-Random
    LPI-IBWA:PredictinglncRNA-proteininteractionsbasedonanimprovedBi-RandomwalkalgorithmMinzhuXie 1, RuijieXie 2, HaoWang 3Affiliations expandPMID: 37972912 DOI: 10.1016/j.ymeth.2023.11.007 SigninAbstractManystudies......
  • Graph regularized non-negative matrix factorization with [Formula: see text] nor
    Graphregularizednon-negativematrixfactorizationwith[Formula:seetext]normregularizationtermsfordrug-targetinteractionspredictionJunjunZhang 1, MinzhuXie 2 3Affiliations expandPMID: 37789278 PMCID: PMC10548602 DOI: 10.11......
  • B4185. LPI-IBWA:Predicting lncRNA-protein Interactions Based on Improved Bi-Ran
    B4185.LPI-IBWA:PredictinglncRNA-proteinInteractionsBasedonImprovedBi-RandomWalkAlgorithmMinzhuXie1,HaoWang1 andRuijieXi11HunanNormalUniversityAbstract:Manystudieshaveshownthatlong-chainnoncodingRNAs(lncRNAs)areinvolvedinav......
  • The kexec-based Crash Dumping Solution (翻译 by chatgpt)
    原文:https://www.kernel.org/doc/html/latest/admin-guide/kdump/kdump.html这份文档包括概述、设置、安装和分析信息。概述Kdump使用kexec快速引导到一个转储捕获内核,每当需要对系统内核的内存进行转储(例如系统发生崩溃)时。系统内核的内存镜像在重启过程中得以保留,并且可以......
  • GMMSeg: Gaussian Mixture based Generative Semantic Segmentation Models
    前置知识:【EM算法深度解析-CSDNApp】http://t.csdnimg.cn/r6TXMMotivation目前的语义分割通常采用判别式分类器,然而这存在三个问题:这种方式仅仅学习了决策边界,而没有对数据分布进行建模;每个类仅学习一个向量,没有考虑到类内差异;OOD数据效果不好。生成式分类器通过对联合分布......
  • RBAC权限控制 (Role Based Access Control)
    ACL和RBAC对比之前的ACL权限控制是直接给用户分配权限的。而RBAC是这样的:RBAC是先分开角色,然后把角色分给指定的用户通过在用户和权限之间多加一层“角色”来做权限管理给角色分配权限,然后给用户分配角色这样有什么好处呢?  比如说:管理员有a、b、c3个权限,而张三李四......
  • 2023 - LauraHughes - A Novel Method to Determine Probabilistic Tsunami Hazard Us
    概要这篇文章主要讨论了使用基于物理的合成地震目录进行海啸危险评估的首次尝试,并展示了在新西兰海岸附近,近场地震海啸可以产生高达28米的最大海浪高度。文章介绍了使用CornellMulti-gridCoupledTsunami模型(COMCOT)进行海啸生成和传播模拟的方法,并对模拟结果进行了分析。文章还......
  • LncDLSM: Identification of Long Non-coding RNAs with Deep Learning-based Sequenc
    关键词:作者:期刊:IEEEJournalofBiomedicalandHealthInformatics年份:2023论文原文:https://doi.org/10.1101/2022.09.02.506180主要内容1问题:长链非编码RNA(LncRNAs)在调控基因表达和其他生物过程中起着至关重要的作用。区分lncRNA和蛋白质编码转录本(PCTs)有助于研究人员深......
  • Web 应用中显示页面字体使用的 font-based icons 技术讲解
    在前端Web应用开发中,采用字体图标(font-basedicons)的方法是一种常见的技术,它允许开发者使用字体文件来呈现图标,而不是使用传统的图像文件。这种方法的优势在于它提供了一种灵活、轻量级且易于管理的方式来集成和使用图标,同时减少了HTTP请求和提高性能。Font-basedicons的实现通......