首页 > 其他分享 >Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for

Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for

时间:2023-12-08 10:03:44浏览次数:53  
标签:non target interactions constraint factorization drug knowledge matrix

Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug-target interactions prediction

Junjun Zhang 1Minzhu Xie 2 3 Affiliations  Sign in Free PMC article

Abstract

Background: Identifying drug-target interactions (DTIs) plays a key role in drug development. Traditional wet experiments to identify DTIs are expensive and time consuming. Effective computational methods to predict DTIs are useful to narrow the searching scope of potential drugs and speed up the process of drug discovery. There are a variety of non-negativity matrix factorization based methods to predict DTIs, but the convergence of the algorithms used in the matrix factorization are often overlooked and the results can be further improved.

Results: In order to predict DTIs more accurately and quickly, we propose an alternating direction algorithm to solve graph regularized non-negative matrix factorization with prior knowledge consistency constraint (ADA-GRMFC). Based on known DTIs, drug chemical structures and target sequences, ADA-GRMFC at first constructs a DTI matrix, a drug similarity matrix and a target similarity matrix. Then DTI prediction is modeled as the non-negative factorization of the DTI matrix with graph dual regularization terms and a prior knowledge consistency constraint. The graph dual regularization terms are used to integrate the information from the drug similarity matrix and the target similarity matrix, and the prior knowledge consistency constraint is used to ensure the matrix decomposition result should be consistent with the prior knowledge of known DTIs. Finally, an alternating direction algorithm is used to solve the matrix factorization. Furthermore, we prove that the algorithm can converge to a stationary point. Extensive experimental results of 10-fold cross-validation show that ADA-GRMFC has better performance than other state-of-the-art methods. In the case study, ADA-GRMFC is also used to predict the targets interacting with the drug olanzapine, and all of the 10 highest-scoring targets have been accurately predicted. In predicting drug interactions with target estrogen receptors alpha, 17 of the 20 highest-scoring drugs have been validated.

Keywords: Drug–target interaction prediction; Graph regularized matrix factorization; Prior knowledge consistency constraint.

标签:non,target,interactions,constraint,factorization,drug,knowledge,matrix
From: https://www.cnblogs.com/wangprince2017/p/17884535.html

相关文章

  • LPI-IBWA: Predicting lncRNA-protein interactions based on an improved Bi-Random
    LPI-IBWA:PredictinglncRNA-proteininteractionsbasedonanimprovedBi-RandomwalkalgorithmMinzhuXie 1, RuijieXie 2, HaoWang 3Affiliations expandPMID: 37972912 DOI: 10.1016/j.ymeth.2023.11.007 SigninAbstractManystudies......
  • Graph regularized non-negative matrix factorization with [Formula: see text] nor
    Graphregularizednon-negativematrixfactorizationwith[Formula:seetext]normregularizationtermsfordrug-targetinteractionspredictionJunjunZhang 1, MinzhuXie 2 3Affiliations expandPMID: 37789278 PMCID: PMC10548602 DOI: 10.11......
  • B4185. LPI-IBWA:Predicting lncRNA-protein Interactions Based on Improved Bi-Ran
    B4185.LPI-IBWA:PredictinglncRNA-proteinInteractionsBasedonImprovedBi-RandomWalkAlgorithmMinzhuXie1,HaoWang1 andRuijieXi11HunanNormalUniversityAbstract:Manystudieshaveshownthatlong-chainnoncodingRNAs(lncRNAs)areinvolvedinav......
  • MatrixSSL
    MatrixSSL是针对小型应用程序和设备设计的嵌入式、开放源码SSLv3协议栈(商业版支持TLS协议)。它减少了将SSL整合进嵌入式工程的复杂性,使用一个简单的API和安全层,用户可以很容易地将MatrixSSL整合到它们的应用程序。Matrixssl使用工业界标准的加密算法(RC4、DES3、AES、......
  • ADO.Net DataAccess 常用方法ExecuteNonQuery ExecuteReader ExecuteDataSet
    1///<summary>2///Standardinterfacefordataaccessusingstoredprocedures3///</summary>4publicinterfaceIDataAccess5{6stringConnectionString{get;set;}7SqlConnectionCreateConnecti......
  • [ARC141D] Non-divisible Set 题解
    题目链接点击打开链接题目解法很思维的题,需要用好所有的特殊性质暴力的做法是建出图,然后求包含点\(i\)的最长反链,但这明显过不了上面的做法没用到\(a_i<2m\)的性质如何用?把\(a_i\)拆分成\(q\times2^k\;(k\)为奇数\()\)的形式,那么对于同一个\(q\),只能在其中选一个......
  • # 统计df的每一列中不为'None'的元素个数
    #统计df的每一列中不为'None'的元素个数importpandasaspd#创建一个DataFramedf=pd.DataFrame([[1,1,1],[2,2,'None']])df.columns=['col'+str(i)foriinrange(3)]#使用`apply()`和`lambda`函数统计每一列中不为'None'的元素......
  • LncDLSM: Identification of Long Non-coding RNAs with Deep Learning-based Sequenc
    关键词:作者:期刊:IEEEJournalofBiomedicalandHealthInformatics年份:2023论文原文:https://doi.org/10.1101/2022.09.02.506180主要内容1问题:长链非编码RNA(LncRNAs)在调控基因表达和其他生物过程中起着至关重要的作用。区分lncRNA和蛋白质编码转录本(PCTs)有助于研究人员深......
  • [AGC052C] Nondivisible Prefix Sums 题解
    题目链接点击打开链接题目解法好题!一个序列是不合法的,必定满足某些结论,我们不妨猜测一下首先如果和为\(P\)的倍数,必定不合法然后手玩几个可以发现,最极限的情况是\(P-1\)个\(1\;+\;\)\(b_i\;+\;\)\(P-b_i\)如果在这个情况下再加一个\(1\),就爆了其中\(1\)可以替......
  • matplotlib之matplotlib.pyplot.yticks(ticks=None, labels=None, **kwargs)函数
    matplotlib中的xticks函数用于设置坐标轴的刻度和标签,包括位置和显示的文本标签。matplotlib.pyplot.xticks(ticks=None,labels=None,**kwargs)ticks:刻度位置,可以是一个列表或数组。labels:刻度对应的标签,可以是一个列表或数组。**kwargs:其他关键字参数,用于控制......