https://github.com/gaoxia
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/calib3d/calib3d.hpp> #include <Eigen/Core> #include <Eigen/Geometry> #include <g2o/core/base_vertex.h> #include <g2o/core/base_unary_edge.h> #include <g2o/core/block_solver.h> #include <g2o/core/optimization_algorithm_levenberg.h> #include <g2o/solvers/csparse/linear_solver_csparse.h> #include <g2o/types/sba/types_six_dof_expmap.h> #include <chrono> using namespace std; using namespace cv; void find_feature_matches ( const Mat& img_1, const Mat& img_2, std::vector<KeyPoint>& keypoints_1, std::vector<KeyPoint>& keypoints_2, std::vector< DMatch >& matches ); // 像素坐标转相机归一化坐标 Point2d pixel2cam ( const Point2d& p, const Mat& K ); void bundleAdjustment ( const vector<Point3f> points_3d, const vector<Point2f> points_2d, const Mat& K, Mat& R, Mat& t ); int main ( int argc, char** argv ) { if ( argc != 5 ) { cout<<"usage: pose_estimation_3d2d img1 img2 depth1 depth2"<<endl; return 1; } //-- 读取图像 Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR ); Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR ); vector<KeyPoint> keypoints_1, keypoints_2; vector<DMatch> matches; find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches ); cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl; // 建立3D点 Mat d1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像 Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); vector<Point3f> pts_3d; vector<Point2f> pts_2d; for ( DMatch m:matches ) { ushort d = d1.ptr<unsigned short> (int ( keypoints_1[m.queryIdx].pt.y )) [ int ( keypoints_1[m.queryIdx].pt.x ) ]; if ( d == 0 ) // bad depth continue; float dd = d/5000.0; Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K ); pts_3d.push_back ( Point3f ( p1.x*dd, p1.y*dd, dd ) ); pts_2d.push_back ( keypoints_2[m.trainIdx].pt ); } cout<<"3d-2d pairs: "<<pts_3d.size() <<endl; Mat r, t; solvePnP ( pts_3d, pts_2d, K, Mat(), r, t, false ); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法 Mat R; cv::Rodrigues ( r, R ); // r为旋转向量形式,用Rodrigues公式转换为矩阵 cout<<"R="<<endl<<R<<endl; cout<<"t="<<endl<<t<<endl; cout<<"calling bundle adjustment"<<endl; bundleAdjustment ( pts_3d, pts_2d, K, R, t ); } void find_feature_matches ( const Mat& img_1, const Mat& img_2, std::vector<KeyPoint>& keypoints_1, std::vector<KeyPoint>& keypoints_2, std::vector< DMatch >& matches ) { //-- 初始化 Mat descriptors_1, descriptors_2; // used in OpenCV3 Ptr<FeatureDetector> detector = ORB::create(); Ptr<DescriptorExtractor> descriptor = ORB::create(); // use this if you are in OpenCV2 // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" ); // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" ); Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" ); //-- 第一步:检测 Oriented FAST 角点位置 detector->detect ( img_1,keypoints_1 ); detector->detect ( img_2,keypoints_2 ); //-- 第二步:根据角点位置计算 BRIEF 描述子 descriptor->compute ( img_1, keypoints_1, descriptors_1 ); descriptor->compute ( img_2, keypoints_2, descriptors_2 ); //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 vector<DMatch> match; // BFMatcher matcher ( NORM_HAMMING ); matcher->match ( descriptors_1, descriptors_2, match ); //-- 第四步:匹配点对筛选 double min_dist=10000, max_dist=0; //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 for ( int i = 0; i < descriptors_1.rows; i++ ) { double dist = match[i].distance; if ( dist < min_dist ) min_dist = dist; if ( dist > max_dist ) max_dist = dist; } printf ( "-- Max dist : %f \n", max_dist ); printf ( "-- Min dist : %f \n", min_dist ); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. for ( int i = 0; i < descriptors_1.rows; i++ ) { if ( match[i].distance <= max ( 2*min_dist, 30.0 ) ) { matches.push_back ( match[i] ); } } } Point2d pixel2cam ( const Point2d& p, const Mat& K ) { return Point2d ( ( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ), ( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 ) ); } void bundleAdjustment ( const vector< Point3f > points_3d, const vector< Point2f > points_2d, const Mat& K, Mat& R, Mat& t ) { // 初始化g2o typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block; // pose 维度为 6, landmark 维度为 3 Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器 Block* solver_ptr = new Block ( linearSolver ); // 矩阵块求解器 g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr ); g2o::SparseOptimizer optimizer; optimizer.setAlgorithm ( solver ); // vertex g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose Eigen::Matrix3d R_mat; R_mat << R.at<double> ( 0,0 ), R.at<double> ( 0,1 ), R.at<double> ( 0,2 ), R.at<double> ( 1,0 ), R.at<double> ( 1,1 ), R.at<double> ( 1,2 ), R.at<double> ( 2,0 ), R.at<double> ( 2,1 ), R.at<double> ( 2,2 ); pose->setId ( 0 ); pose->setEstimate ( g2o::SE3Quat ( R_mat, Eigen::Vector3d ( t.at<double> ( 0,0 ), t.at<double> ( 1,0 ), t.at<double> ( 2,0 ) ) ) ); optimizer.addVertex ( pose ); int index = 1; for ( const Point3f p:points_3d ) // landmarks { g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ(); point->setId ( index++ ); point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) ); point->setMarginalized ( true ); // g2o 中必须设置 marg 参见第十讲内容 optimizer.addVertex ( point ); } // parameter: camera intrinsics g2o::CameraParameters* camera = new g2o::CameraParameters ( K.at<double> ( 0,0 ), Eigen::Vector2d ( K.at<double> ( 0,2 ), K.at<double> ( 1,2 ) ), 0 ); camera->setId ( 0 ); optimizer.addParameter ( camera ); // edges index = 1; for ( const Point2f p:points_2d ) { g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV(); edge->setId ( index ); edge->setVertex ( 0, dynamic_cast<g2o::VertexSBAPointXYZ*> ( optimizer.vertex ( index ) ) ); edge->setVertex ( 1, pose ); edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) ); edge->setParameterId ( 0,0 ); edge->setInformation ( Eigen::Matrix2d::Identity() ); optimizer.addEdge ( edge ); index++; } chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); optimizer.setVerbose ( true ); optimizer.initializeOptimization(); optimizer.optimize ( 100 ); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> ( t2-t1 ); cout<<"optimization costs time: "<<time_used.count() <<" seconds."<<endl; cout<<endl<<"after optimization:"<<endl; cout<<"T="<<endl<<Eigen::Isometry3d ( pose->estimate() ).matrix() <<endl; }
ng12/slambook/tree/master/ch7
CMakeLists.txt
cmake_minimum_required( VERSION 2.8 ) project( vo1 ) set( CMAKE_BUILD_TYPE "Release" ) set( CMAKE_CXX_FLAGS "-std=c++11 -O3" ) # 添加cmake模块以使用g2o list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules ) find_package( OpenCV 3.1 REQUIRED ) # find_package( OpenCV REQUIRED ) # use this if in OpenCV2 find_package( G2O REQUIRED ) find_package( CSparse REQUIRED ) include_directories( ${OpenCV_INCLUDE_DIRS} ${G2O_INCLUDE_DIRS} ${CSPARSE_INCLUDE_DIR} "/usr/include/eigen3/" ) add_executable( feature_extraction feature_extraction.cpp ) target_link_libraries( feature_extraction ${OpenCV_LIBS} ) # add_executable( pose_estimation_2d2d pose_estimation_2d2d.cpp extra.cpp ) # use this if in OpenCV2 add_executable( pose_estimation_2d2d pose_estimation_2d2d.cpp ) target_link_libraries( pose_estimation_2d2d ${OpenCV_LIBS} ) # add_executable( triangulation triangulation.cpp extra.cpp) # use this if in opencv2 add_executable( triangulation triangulation.cpp ) target_link_libraries( triangulation ${OpenCV_LIBS} ) add_executable( pose_estimation_3d2d pose_estimation_3d2d.cpp ) target_link_libraries( pose_estimation_3d2d ${OpenCV_LIBS} ${CSPARSE_LIBRARY} g2o_core g2o_stuff g2o_types_sba g2o_csparse_extension ) add_executable( pose_estimation_3d3d pose_estimation_3d3d.cpp ) target_link_libraries( pose_estimation_3d3d ${OpenCV_LIBS} g2o_core g2o_stuff g2o_types_sba g2o_csparse_extension ${CSPARSE_LIBRARY} )
标签:dist,BA,pose,keypoints,2d,g2o,include,const From: https://www.cnblogs.com/gooutlook/p/17836463.html