首页 > 其他分享 >g2o(5-3)3d-3d BA优化

g2o(5-3)3d-3d BA优化

时间:2023-11-16 15:55:41浏览次数:33  
标签:jacobianOplusXi dist BA keypoints vector g2o include 3d

https://github.com/gaoxiang12/slambook/blob/master/ch7/pose_estimation_3d3d.cpp

 

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/SVD>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/solvers/eigen/linear_solver_eigen.h>
#include <g2o/types/sba/types_six_dof_expmap.h>
#include <chrono>

using namespace std;
using namespace cv;

void find_feature_matches (
    const Mat& img_1, const Mat& img_2,
    std::vector<KeyPoint>& keypoints_1,
    std::vector<KeyPoint>& keypoints_2,
    std::vector< DMatch >& matches );

// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );

void pose_estimation_3d3d (
    const vector<Point3f>& pts1,
    const vector<Point3f>& pts2,
    Mat& R, Mat& t
);

void bundleAdjustment(
    const vector<Point3f>& points_3d,
    const vector<Point3f>& points_2d,
    Mat& R, Mat& t
);

// g2o edge
class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, g2o::VertexSE3Expmap>
{
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    EdgeProjectXYZRGBDPoseOnly( const Eigen::Vector3d& point ) : _point(point) {}

    virtual void computeError()
    {
        const g2o::VertexSE3Expmap* pose = static_cast<const g2o::VertexSE3Expmap*> ( _vertices[0] );
        // measurement is p, point is p'
        _error = _measurement - pose->estimate().map( _point );
    }

    virtual void linearizeOplus()
    {
        g2o::VertexSE3Expmap* pose = static_cast<g2o::VertexSE3Expmap *>(_vertices[0]);
        g2o::SE3Quat T(pose->estimate());
        Eigen::Vector3d xyz_trans = T.map(_point);
        double x = xyz_trans[0];
        double y = xyz_trans[1];
        double z = xyz_trans[2];

        _jacobianOplusXi(0,0) = 0;
        _jacobianOplusXi(0,1) = -z;
        _jacobianOplusXi(0,2) = y;
        _jacobianOplusXi(0,3) = -1;
        _jacobianOplusXi(0,4) = 0;
        _jacobianOplusXi(0,5) = 0;

        _jacobianOplusXi(1,0) = z;
        _jacobianOplusXi(1,1) = 0;
        _jacobianOplusXi(1,2) = -x;
        _jacobianOplusXi(1,3) = 0;
        _jacobianOplusXi(1,4) = -1;
        _jacobianOplusXi(1,5) = 0;

        _jacobianOplusXi(2,0) = -y;
        _jacobianOplusXi(2,1) = x;
        _jacobianOplusXi(2,2) = 0;
        _jacobianOplusXi(2,3) = 0;
        _jacobianOplusXi(2,4) = 0;
        _jacobianOplusXi(2,5) = -1;
    }

    bool read ( istream& in ) {}
    bool write ( ostream& out ) const {}
protected:
    Eigen::Vector3d _point;
};

int main ( int argc, char** argv )
{
    if ( argc != 5 )
    {
        cout<<"usage: pose_estimation_3d3d img1 img2 depth1 depth2"<<endl;
        return 1;
    }
    //-- 读取图像
    Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
    Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );

    vector<KeyPoint> keypoints_1, keypoints_2;
    vector<DMatch> matches;
    find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
    cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;

    // 建立3D点
    Mat depth1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED );       // 深度图为16位无符号数,单通道图像
    Mat depth2 = imread ( argv[4], CV_LOAD_IMAGE_UNCHANGED );       // 深度图为16位无符号数,单通道图像
    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
    vector<Point3f> pts1, pts2;

    for ( DMatch m:matches )
    {
        ushort d1 = depth1.ptr<unsigned short> ( int ( keypoints_1[m.queryIdx].pt.y ) ) [ int ( keypoints_1[m.queryIdx].pt.x ) ];
        ushort d2 = depth2.ptr<unsigned short> ( int ( keypoints_2[m.trainIdx].pt.y ) ) [ int ( keypoints_2[m.trainIdx].pt.x ) ];
        if ( d1==0 || d2==0 )   // bad depth
            continue;
        Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );
        Point2d p2 = pixel2cam ( keypoints_2[m.trainIdx].pt, K );
        float dd1 = float ( d1 ) /5000.0;
        float dd2 = float ( d2 ) /5000.0;
        pts1.push_back ( Point3f ( p1.x*dd1, p1.y*dd1, dd1 ) );
        pts2.push_back ( Point3f ( p2.x*dd2, p2.y*dd2, dd2 ) );
    }

    cout<<"3d-3d pairs: "<<pts1.size() <<endl;
    Mat R, t;
    pose_estimation_3d3d ( pts1, pts2, R, t );
    cout<<"ICP via SVD results: "<<endl;
    cout<<"R = "<<R<<endl;
    cout<<"t = "<<t<<endl;
    cout<<"R_inv = "<<R.t() <<endl;
    cout<<"t_inv = "<<-R.t() *t<<endl;

    cout<<"calling bundle adjustment"<<endl;

    bundleAdjustment( pts1, pts2, R, t );

    // verify p1 = R*p2 + t
    for ( int i=0; i<5; i++ )
    {
        cout<<"p1 = "<<pts1[i]<<endl;
        cout<<"p2 = "<<pts2[i]<<endl;
        cout<<"(R*p2+t) = "<<
            R * (Mat_<double>(3,1)<<pts2[i].x, pts2[i].y, pts2[i].z) + t
            <<endl;
        cout<<endl;
    }
}

void find_feature_matches ( const Mat& img_1, const Mat& img_2,
                            std::vector<KeyPoint>& keypoints_1,
                            std::vector<KeyPoint>& keypoints_2,
                            std::vector< DMatch >& matches )
{
    //-- 初始化
    Mat descriptors_1, descriptors_2;
    // used in OpenCV3
    Ptr<FeatureDetector> detector = ORB::create();
    Ptr<DescriptorExtractor> descriptor = ORB::create();
    // use this if you are in OpenCV2
    // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
    // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
    Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create("BruteForce-Hamming");
    //-- 第一步:检测 Oriented FAST 角点位置
    detector->detect ( img_1,keypoints_1 );
    detector->detect ( img_2,keypoints_2 );

    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute ( img_1, keypoints_1, descriptors_1 );
    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector<DMatch> match;
   // BFMatcher matcher ( NORM_HAMMING );
    matcher->match ( descriptors_1, descriptors_2, match );

    //-- 第四步:匹配点对筛选
    double min_dist=10000, max_dist=0;

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        double dist = match[i].distance;
        if ( dist < min_dist ) min_dist = dist;
        if ( dist > max_dist ) max_dist = dist;
    }

    printf ( "-- Max dist : %f \n", max_dist );
    printf ( "-- Min dist : %f \n", min_dist );

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    for ( int i = 0; i < descriptors_1.rows; i++ )
    {
        if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
        {
            matches.push_back ( match[i] );
        }
    }
}

Point2d pixel2cam ( const Point2d& p, const Mat& K )
{
    return Point2d
           (
               ( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),
               ( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )
           );
}

void pose_estimation_3d3d (
    const vector<Point3f>& pts1,
    const vector<Point3f>& pts2,
    Mat& R, Mat& t
)
{
    Point3f p1, p2;     // center of mass
    int N = pts1.size();
    for ( int i=0; i<N; i++ )
    {
        p1 += pts1[i];
        p2 += pts2[i];
    }
    p1 = Point3f( Vec3f(p1) /  N);
    p2 = Point3f( Vec3f(p2) / N);
    vector<Point3f>     q1 ( N ), q2 ( N ); // remove the center
    for ( int i=0; i<N; i++ )
    {
        q1[i] = pts1[i] - p1;
        q2[i] = pts2[i] - p2;
    }

    // compute q1*q2^T
    Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
    for ( int i=0; i<N; i++ )
    {
        W += Eigen::Vector3d ( q1[i].x, q1[i].y, q1[i].z ) * Eigen::Vector3d ( q2[i].x, q2[i].y, q2[i].z ).transpose();
    }
    cout<<"W="<<W<<endl;

    // SVD on W
    Eigen::JacobiSVD<Eigen::Matrix3d> svd ( W, Eigen::ComputeFullU|Eigen::ComputeFullV );
    Eigen::Matrix3d U = svd.matrixU();
    Eigen::Matrix3d V = svd.matrixV();
    
    if (U.determinant() * V.determinant() < 0)
	{
        for (int x = 0; x < 3; ++x)
        {
            U(x, 2) *= -1;
        }
	}
    
    cout<<"U="<<U<<endl;
    cout<<"V="<<V<<endl;

    Eigen::Matrix3d R_ = U* ( V.transpose() );
    Eigen::Vector3d t_ = Eigen::Vector3d ( p1.x, p1.y, p1.z ) - R_ * Eigen::Vector3d ( p2.x, p2.y, p2.z );

    // convert to cv::Mat
    R = ( Mat_<double> ( 3,3 ) <<
          R_ ( 0,0 ), R_ ( 0,1 ), R_ ( 0,2 ),
          R_ ( 1,0 ), R_ ( 1,1 ), R_ ( 1,2 ),
          R_ ( 2,0 ), R_ ( 2,1 ), R_ ( 2,2 )
        );
    t = ( Mat_<double> ( 3,1 ) << t_ ( 0,0 ), t_ ( 1,0 ), t_ ( 2,0 ) );
}

void bundleAdjustment (
    const vector< Point3f >& pts1,
    const vector< Point3f >& pts2,
    Mat& R, Mat& t )
{
    // 初始化g2o
    typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block;  // pose维度为 6, landmark 维度为 3
    Block::LinearSolverType* linearSolver = new g2o::LinearSolverEigen<Block::PoseMatrixType>(); // 线性方程求解器
    Block* solver_ptr = new Block( linearSolver );      // 矩阵块求解器
    g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr );
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm( solver );

    // vertex
    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
    pose->setId(0);
    pose->setEstimate( g2o::SE3Quat(
        Eigen::Matrix3d::Identity(),
        Eigen::Vector3d( 0,0,0 )
    ) );
    optimizer.addVertex( pose );

    // edges
    int index = 1;
    vector<EdgeProjectXYZRGBDPoseOnly*> edges;
    for ( size_t i=0; i<pts1.size(); i++ )
    {
        EdgeProjectXYZRGBDPoseOnly* edge = new EdgeProjectXYZRGBDPoseOnly(
            Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z) );
        edge->setId( index );
        edge->setVertex( 0, dynamic_cast<g2o::VertexSE3Expmap*> (pose) );
        edge->setMeasurement( Eigen::Vector3d(
            pts1[i].x, pts1[i].y, pts1[i].z) );
        edge->setInformation( Eigen::Matrix3d::Identity()*1e4 );
        optimizer.addEdge(edge);
        index++;
        edges.push_back(edge);
    }

    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    optimizer.setVerbose( true );
    optimizer.initializeOptimization();
    optimizer.optimize(10);
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2-t1);
    cout<<"optimization costs time: "<<time_used.count()<<" seconds."<<endl;

    cout<<endl<<"after optimization:"<<endl;
    cout<<"T="<<endl<<Eigen::Isometry3d( pose->estimate() ).matrix()<<endl;

}

  

标签:jacobianOplusXi,dist,BA,keypoints,vector,g2o,include,3d
From: https://www.cnblogs.com/gooutlook/p/17836474.html

相关文章

  • SAP ABAP调用REST服务
    就是调用为外部HTTP接口 zcl_json=>deserialize因为版本问题 自定义的json转换函数 根据自己的版本使用对应函数就好reportztest25.data:urltypestring,"接口地址gv_json_intypestring,"输入参数(账号密码啥的)jso......
  • error DatabaseException(disk I/O error (code 1802)) sql 'PRAGMA user_version' ar
    问题描述errorDatabaseException(diskI/Oerror(code1802))sql'PRAGMAuser_version'args[]duringopen,c问题分析错误消息"DatabaseException(diskI/Oerror(code1802))"表示在尝试打开SQLite数据库时发生了磁盘I/O错误。这可能有几种原因:数据库文件路径......
  • Mybatis常见问题
    1.JDBC1.1JDBC是什么高级语言的应用程序需要特定的方式访问数据库。特定的方式:JDBC,ODBCJDBC本质上是一系列的应用程序接口(API)通过JAVA语言访问任何结构化数据库通过JDBCAPI写出的程序,能够将SQL语句发送到相应的任何一种数据库通过使用JDBC,开发人员可以很方便地将SQL语句传送给几......
  • uniapp运行启动时候出现 The current application is running in a custom debugging
    突然出现这个,原来是uniapp说的自定义基座,是在app/src/main/assets/data/dcloud_contro.xml中需要修改hbuilder标签中的debug的值,如果为true则会出现标题的提示,如果改为false则不会出现标题提示的弹窗<hbuilderdebug="false"syncDebug="false"><apps><appappid="__UNI__......
  • PostgreSQL技术大讲堂 - 第34讲:调优工具pgBagder部署
       PostgreSQL从小白到专家,是从入门逐渐能力提升的一个系列教程,内容包括对PG基础的认知、包括安装使用、包括角色权限、包括维护管理、、等内容,希望对热爱PG、学习PG的同学们有帮助,欢迎持续关注CUUGPG技术大讲堂。 第34讲:调优工具pgBagder部署 第34讲:11月18日(周六)......
  • 机器学习——Bahdanau 注意力
    9.7节中探讨了机器翻译问题:通过设计一个基于两个循环神经网络的编码器-解码器架构,用于序列到序列学习。具体来说,循环神经网络编码器将长度可变的序列转换为固定形状的上下文变量,然后循环神经网络解码器根据生成的词元和上下文变量按词元生成输出(目标)序列词元。然而,即使并非......
  • [940] Create a progress bar in Python
    TocreateaprogressbarinPython,youcanusethetqdmlibrary,whichisapopularlibraryforaddingprogressbarstoyourloops.Ifyouhaven'tinstalledityet,youcandosousing:pipinstalltqdmHere'sasimpleexampleofhowtousetqd......
  • 搭建Samba服务器笔记全套
    Top目录安装端口与服务管理其他常用命令配置全局配置共享库配置用户名密码认证库配置Samba登录用户配置防火墙配置设定安全的上下文关系本地系统设置访问读写权限Pdbedit用法Smbpasswd用法其他Windows下相关转发查看网络连接--可删除缓存,用于切换登录用户Windows设置Smb......
  • nginx配置kibana访问用户名和密码认证、及无认证访问配置
    在nginx上配置kibana页面访问时,默认是采用kibana的认证,一般直接安装kibana后,是没有用户名和密码认证的。如果要在负载均衡上配置反向代理和用户认证,可按以下步骤进行配置:1.安装Nginx:首先,确保已经安装了Nginx,并且可以正常访问Kibana页面。2.生成密码文件:使用htpa......
  • 点阵LED数码管显示驱动IC VK16K33 A/B/C/BA/AA 驱动电流大 质量稳定 适用于计量插座,数
    概述VK16K33是一种带按键扫描接口的数码管或点阵LED驱动控制专用芯片,内部集成有数据锁存器、键盘扫描、LED驱动模块等电路。数据通过I2C通讯接口与MCU通信。SEG脚接LED阳极,GRID脚接LED阴极,可支持16SEGx8GRID的点阵LED显示面板。最大支持13×3的按键。内置上电复位电路,整体闪烁频......