https://github.com/gaoxiang12/slambook/blob/master/ch7/pose_estimation_3d3d.cpp
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/calib3d/calib3d.hpp> #include <Eigen/Core> #include <Eigen/Geometry> #include <Eigen/SVD> #include <g2o/core/base_vertex.h> #include <g2o/core/base_unary_edge.h> #include <g2o/core/block_solver.h> #include <g2o/core/optimization_algorithm_gauss_newton.h> #include <g2o/solvers/eigen/linear_solver_eigen.h> #include <g2o/types/sba/types_six_dof_expmap.h> #include <chrono> using namespace std; using namespace cv; void find_feature_matches ( const Mat& img_1, const Mat& img_2, std::vector<KeyPoint>& keypoints_1, std::vector<KeyPoint>& keypoints_2, std::vector< DMatch >& matches ); // 像素坐标转相机归一化坐标 Point2d pixel2cam ( const Point2d& p, const Mat& K ); void pose_estimation_3d3d ( const vector<Point3f>& pts1, const vector<Point3f>& pts2, Mat& R, Mat& t ); void bundleAdjustment( const vector<Point3f>& points_3d, const vector<Point3f>& points_2d, Mat& R, Mat& t ); // g2o edge class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, g2o::VertexSE3Expmap> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW; EdgeProjectXYZRGBDPoseOnly( const Eigen::Vector3d& point ) : _point(point) {} virtual void computeError() { const g2o::VertexSE3Expmap* pose = static_cast<const g2o::VertexSE3Expmap*> ( _vertices[0] ); // measurement is p, point is p' _error = _measurement - pose->estimate().map( _point ); } virtual void linearizeOplus() { g2o::VertexSE3Expmap* pose = static_cast<g2o::VertexSE3Expmap *>(_vertices[0]); g2o::SE3Quat T(pose->estimate()); Eigen::Vector3d xyz_trans = T.map(_point); double x = xyz_trans[0]; double y = xyz_trans[1]; double z = xyz_trans[2]; _jacobianOplusXi(0,0) = 0; _jacobianOplusXi(0,1) = -z; _jacobianOplusXi(0,2) = y; _jacobianOplusXi(0,3) = -1; _jacobianOplusXi(0,4) = 0; _jacobianOplusXi(0,5) = 0; _jacobianOplusXi(1,0) = z; _jacobianOplusXi(1,1) = 0; _jacobianOplusXi(1,2) = -x; _jacobianOplusXi(1,3) = 0; _jacobianOplusXi(1,4) = -1; _jacobianOplusXi(1,5) = 0; _jacobianOplusXi(2,0) = -y; _jacobianOplusXi(2,1) = x; _jacobianOplusXi(2,2) = 0; _jacobianOplusXi(2,3) = 0; _jacobianOplusXi(2,4) = 0; _jacobianOplusXi(2,5) = -1; } bool read ( istream& in ) {} bool write ( ostream& out ) const {} protected: Eigen::Vector3d _point; }; int main ( int argc, char** argv ) { if ( argc != 5 ) { cout<<"usage: pose_estimation_3d3d img1 img2 depth1 depth2"<<endl; return 1; } //-- 读取图像 Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR ); Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR ); vector<KeyPoint> keypoints_1, keypoints_2; vector<DMatch> matches; find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches ); cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl; // 建立3D点 Mat depth1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像 Mat depth2 = imread ( argv[4], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像 Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 ); vector<Point3f> pts1, pts2; for ( DMatch m:matches ) { ushort d1 = depth1.ptr<unsigned short> ( int ( keypoints_1[m.queryIdx].pt.y ) ) [ int ( keypoints_1[m.queryIdx].pt.x ) ]; ushort d2 = depth2.ptr<unsigned short> ( int ( keypoints_2[m.trainIdx].pt.y ) ) [ int ( keypoints_2[m.trainIdx].pt.x ) ]; if ( d1==0 || d2==0 ) // bad depth continue; Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K ); Point2d p2 = pixel2cam ( keypoints_2[m.trainIdx].pt, K ); float dd1 = float ( d1 ) /5000.0; float dd2 = float ( d2 ) /5000.0; pts1.push_back ( Point3f ( p1.x*dd1, p1.y*dd1, dd1 ) ); pts2.push_back ( Point3f ( p2.x*dd2, p2.y*dd2, dd2 ) ); } cout<<"3d-3d pairs: "<<pts1.size() <<endl; Mat R, t; pose_estimation_3d3d ( pts1, pts2, R, t ); cout<<"ICP via SVD results: "<<endl; cout<<"R = "<<R<<endl; cout<<"t = "<<t<<endl; cout<<"R_inv = "<<R.t() <<endl; cout<<"t_inv = "<<-R.t() *t<<endl; cout<<"calling bundle adjustment"<<endl; bundleAdjustment( pts1, pts2, R, t ); // verify p1 = R*p2 + t for ( int i=0; i<5; i++ ) { cout<<"p1 = "<<pts1[i]<<endl; cout<<"p2 = "<<pts2[i]<<endl; cout<<"(R*p2+t) = "<< R * (Mat_<double>(3,1)<<pts2[i].x, pts2[i].y, pts2[i].z) + t <<endl; cout<<endl; } } void find_feature_matches ( const Mat& img_1, const Mat& img_2, std::vector<KeyPoint>& keypoints_1, std::vector<KeyPoint>& keypoints_2, std::vector< DMatch >& matches ) { //-- 初始化 Mat descriptors_1, descriptors_2; // used in OpenCV3 Ptr<FeatureDetector> detector = ORB::create(); Ptr<DescriptorExtractor> descriptor = ORB::create(); // use this if you are in OpenCV2 // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" ); // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" ); Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); //-- 第一步:检测 Oriented FAST 角点位置 detector->detect ( img_1,keypoints_1 ); detector->detect ( img_2,keypoints_2 ); //-- 第二步:根据角点位置计算 BRIEF 描述子 descriptor->compute ( img_1, keypoints_1, descriptors_1 ); descriptor->compute ( img_2, keypoints_2, descriptors_2 ); //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 vector<DMatch> match; // BFMatcher matcher ( NORM_HAMMING ); matcher->match ( descriptors_1, descriptors_2, match ); //-- 第四步:匹配点对筛选 double min_dist=10000, max_dist=0; //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 for ( int i = 0; i < descriptors_1.rows; i++ ) { double dist = match[i].distance; if ( dist < min_dist ) min_dist = dist; if ( dist > max_dist ) max_dist = dist; } printf ( "-- Max dist : %f \n", max_dist ); printf ( "-- Min dist : %f \n", min_dist ); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. for ( int i = 0; i < descriptors_1.rows; i++ ) { if ( match[i].distance <= max ( 2*min_dist, 30.0 ) ) { matches.push_back ( match[i] ); } } } Point2d pixel2cam ( const Point2d& p, const Mat& K ) { return Point2d ( ( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ), ( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 ) ); } void pose_estimation_3d3d ( const vector<Point3f>& pts1, const vector<Point3f>& pts2, Mat& R, Mat& t ) { Point3f p1, p2; // center of mass int N = pts1.size(); for ( int i=0; i<N; i++ ) { p1 += pts1[i]; p2 += pts2[i]; } p1 = Point3f( Vec3f(p1) / N); p2 = Point3f( Vec3f(p2) / N); vector<Point3f> q1 ( N ), q2 ( N ); // remove the center for ( int i=0; i<N; i++ ) { q1[i] = pts1[i] - p1; q2[i] = pts2[i] - p2; } // compute q1*q2^T Eigen::Matrix3d W = Eigen::Matrix3d::Zero(); for ( int i=0; i<N; i++ ) { W += Eigen::Vector3d ( q1[i].x, q1[i].y, q1[i].z ) * Eigen::Vector3d ( q2[i].x, q2[i].y, q2[i].z ).transpose(); } cout<<"W="<<W<<endl; // SVD on W Eigen::JacobiSVD<Eigen::Matrix3d> svd ( W, Eigen::ComputeFullU|Eigen::ComputeFullV ); Eigen::Matrix3d U = svd.matrixU(); Eigen::Matrix3d V = svd.matrixV(); if (U.determinant() * V.determinant() < 0) { for (int x = 0; x < 3; ++x) { U(x, 2) *= -1; } } cout<<"U="<<U<<endl; cout<<"V="<<V<<endl; Eigen::Matrix3d R_ = U* ( V.transpose() ); Eigen::Vector3d t_ = Eigen::Vector3d ( p1.x, p1.y, p1.z ) - R_ * Eigen::Vector3d ( p2.x, p2.y, p2.z ); // convert to cv::Mat R = ( Mat_<double> ( 3,3 ) << R_ ( 0,0 ), R_ ( 0,1 ), R_ ( 0,2 ), R_ ( 1,0 ), R_ ( 1,1 ), R_ ( 1,2 ), R_ ( 2,0 ), R_ ( 2,1 ), R_ ( 2,2 ) ); t = ( Mat_<double> ( 3,1 ) << t_ ( 0,0 ), t_ ( 1,0 ), t_ ( 2,0 ) ); } void bundleAdjustment ( const vector< Point3f >& pts1, const vector< Point3f >& pts2, Mat& R, Mat& t ) { // 初始化g2o typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block; // pose维度为 6, landmark 维度为 3 Block::LinearSolverType* linearSolver = new g2o::LinearSolverEigen<Block::PoseMatrixType>(); // 线性方程求解器 Block* solver_ptr = new Block( linearSolver ); // 矩阵块求解器 g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); g2o::SparseOptimizer optimizer; optimizer.setAlgorithm( solver ); // vertex g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose pose->setId(0); pose->setEstimate( g2o::SE3Quat( Eigen::Matrix3d::Identity(), Eigen::Vector3d( 0,0,0 ) ) ); optimizer.addVertex( pose ); // edges int index = 1; vector<EdgeProjectXYZRGBDPoseOnly*> edges; for ( size_t i=0; i<pts1.size(); i++ ) { EdgeProjectXYZRGBDPoseOnly* edge = new EdgeProjectXYZRGBDPoseOnly( Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z) ); edge->setId( index ); edge->setVertex( 0, dynamic_cast<g2o::VertexSE3Expmap*> (pose) ); edge->setMeasurement( Eigen::Vector3d( pts1[i].x, pts1[i].y, pts1[i].z) ); edge->setInformation( Eigen::Matrix3d::Identity()*1e4 ); optimizer.addEdge(edge); index++; edges.push_back(edge); } chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); optimizer.setVerbose( true ); optimizer.initializeOptimization(); optimizer.optimize(10); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2-t1); cout<<"optimization costs time: "<<time_used.count()<<" seconds."<<endl; cout<<endl<<"after optimization:"<<endl; cout<<"T="<<endl<<Eigen::Isometry3d( pose->estimate() ).matrix()<<endl; }
标签:jacobianOplusXi,dist,BA,keypoints,vector,g2o,include,3d From: https://www.cnblogs.com/gooutlook/p/17836474.html