首页 > 其他分享 >卡特兰数专题(Catalan)

卡特兰数专题(Catalan)

时间:2023-11-10 15:38:15浏览次数:49  
标签:专题 frac int len times Catalan 2n 卡特兰

卡特兰数专题(\(Catalan\))

一、什么是卡特兰数?

明安图数,又称卡塔兰数,英文名\(Catalan\) \(number\),是组合数学中一个常出现于各种计数问题中的数列。以中国蒙古族数学家明安图 \((1692-1763)\)和比利时的数学家欧仁·查理·卡塔兰 \((1814–1894)\)的名字来命名,其前几项为(从第零项开始) : \(1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,16796, 58786 …\)

知乎 卡特兰数四连击

https://zhuanlan.zhihu.com/p/31317307
https://zhuanlan.zhihu.com/p/31526354
https://zhuanlan.zhihu.com/p/31585260
https://zhuanlan.zhihu.com/p/31050581

卡特兰数的几何意义

简单来说,卡特兰数就是一个有规律的数列,在坐标图中可以表示为:从原点\((0,0)\)出发,每次向\(x\)轴或者\(y\)轴正方向移动\(1\)个单位,直到到达\((n,n)\)点,且在移动过程中不越过第一象限平分线的移动方案总数。

卡特兰数公式推导

我们暂且先不考虑移动过程中不越过第一象限平分线这个约束条件,那么从\((0,0)\)点到\((n,n)\)点的过程中,我们总共需要向右移动\(n\)步,向上移动\(n\)步,一共\(2n\)步。我们可以理解为在\(2n\)步里面选出\(n\)步来向上移动,那么剩下的\(n\)步就是向右移动的步数,那么方案总数就是\(\LARGE \displaystyle C_{2n}^{n}\)

现在,我们来看看如何解决不越过第一象限平分线这个问题。仔细想想,不越过第一象限平分线也就等价于不触碰到\(y = x + 1\)这条直线。而我们如果把触碰到了直线\(y = x + 1\)的路线的第一个与\(y = x + 1\)的触碰点之后的路线关于直线\(y = x + 1\)对称,并画出对称后的路线

黄海解读

我们会发现触碰到了直线\(y = x + 1\)的路径的终点都变成了点\((n-1,n+1)\)。也就是说,从\((0,0)\)点到\((n,n)\)点的路线当中触碰了直线\(y = x + 1\)的路线条数与从\((0,0)\)点到\((n-1,n+1)\)点的路线条数的数量是相等的。于是从\((0,0)\)点到\((n,n)\)点的非法路径条数为\(\LARGE \displaystyle C_{2n}^{n-1}\) 。

综上所述,从\((0,0)\)点到\((n,n)\)点满足条件的路径数为

卡特兰数通项公式I

$$\huge f(n)=C_{2n}{n}-C_{2n}$$


通过化简,公式可以简化为:

\[\large Catalan_n= C_{2n}^{n}-C_{2n}^{n-1}=\frac{(2n)!}{n! \times n!}-\frac{(2n)!}{(n+1)!\times (n-1)!} \\ =\frac{(2n)!\times (n+1)}{n!\times (n+1)!}-\frac{(2n)!\times n}{n! \times (n+1)!} \\ =\frac{(2n)!\times (n+1)-(2n)!\times n}{n!\times (n+1)!} \\ =\frac{(2n)!}{n!\times (n+1)!}=\frac{1}{n+1}\times \frac{(2n)!}{n!\times n!} =\frac{C_{2n}^n}{n+1} \]

卡特兰数通项公式II

$$\huge \displaystyle f(n)=\frac{C_{2n}^n}{n+1} $$


除了这个通项公式之外,卡特兰数还有一个由该通项公式推导而来的递推公式:

\(\large \displaystyle Catalan_{n+1}= \frac{1}{n+2}C_{2n+2}^{n+1} \\ =\frac{1}{n+2}\times \frac{(2n+2)!}{(n+1)!\times (n+1)!} \\ =\frac{1}{n+2}\times \frac{(2n)!\times (2n+1) \times (2n+2)}{n! \times n!\times (n+1)^2} \\ =\frac{1}{n+2}\times \frac{(2n+1)\times(2n+2)}{n+1} \times \frac{1}{n+1} \times \frac{(2n)!}{n!\times n!} \\ =\frac{2(2n+1)}{n+2}\times \frac{1}{n+1}\times C_{2n}^n \\ =\frac{4n+2}{n+2}Catalan_n \)

初始值:f[0] = f[1] = 1

卡特兰数公式III(递推)

$$\huge f(n)=\frac{4n-2}{n+1}f(n-1) $$

卡特兰数公式IV(取模常用)

$$ \huge f(n)=\frac{(2n)!}{(n+1)! \times n!} $$

卡特兰数公式V(递推)

一般不用来实现,用来推规律

$$\huge \displaystyle f(n)=\sum_{i=0}^{n-1}f(i)f(n-i-1) $$

证明:在\(n\)对括号的排列中,假设最后一个括号和第\(i\)个左括号匹配。则在第\(i\)个左括号之前,一定已经匹配上了(\(i-1\))对左括号。如下图,因此,此种情况的数量为\(f(i-1)*f(n-i)\)。(\(1<=i<=n\))最后一个右括号可以\(1\sim n\)个左括号匹配共\(n\)种情况。

因此,对\(i\)从\(1\)到\(n\)的情况求和得到\(\large \displaystyle f(n)=\sum_{i=0}^{n-1}f(i)f(n-i-1)\),即可得到递推公式。

二、常见考点

1、 进出栈问题

设栈\(S\)的初始状态为空,元素\(a,b,c,d,e\)依次入栈,以下出栈序列有多少种可能性注意:这个序列顺序是定的.

重点:归纳法思考,由大及小。

我们这样去想,假设最终的出栈序列可能性用\(f(n)\)表示,其中\(n\)就是元素的个数。

假设第\(k\)个数是最后出栈的数,那么:

  • 比它小的前\(k-1\)个数,肯定已经完成了入栈,出栈操作。因为从逻辑顺序上来讲,它们无法压到\(k\)下面去吧。
  • 比它大的后\(n-k\)个数,肯定已经完成了入栈,出栈操作。它们倒是可以压到\(k\)下面去,但假设\(k\)是最后一个出栈的,它们不能破坏掉假设,也必须提出出栈。

现在,\(k\)将原来的问题,划分为两个子问题\(f(n-k)\)和\(f(k-1)\),根据乘法原理,结果就是\(f(n-k)*f(k-1)\)。

\(k\)的取值范围是\(1 \leq k \leq n\),再根据加法原理:

\[\large f(n)=\sum_{k=1}^{n}f(n-k)\times f(k-1) \]

展开写就是:$$\large f(n)=f(0) \times f(n-1) + f(1) \times f(n-2) + ... +f(n-1)\times f(0)$$

代码实现:

f[0] = 1;
for (int i = 1; i <= 12; i++) {
    int fi = 0;
    for (int j = 0; j <= i - 1; j++) fi += f[j] * f[i - j - 1];
    cout << fi << " ";
}

P1044 [NOIP2003 普及组] 栈

#include <bits/stdc++.h>

using namespace std;
typedef long long LL;
const int N = 20;
int f[N];
int main() {
    int n;
    cin >> n;
    f[0] = 1;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= i; j++)
            f[i] += f[j - 1] * f[i - j];
    cout << f[n] << endl;
    return 0;
}

2、排队问题

变种(排队问题):出栈入栈问题有许多的变种,比如\(n\)个人拿\(5\)元、\(n\)个人拿\(10\)元买物品,物品\(5\)元,老板没零钱。问有几种排队方式。熟悉栈的同学很容易就能把这个问题转换为栈。值得注意的是,由于每个拿\(5\)元的人排队的次序不是固定的,所以最后求得的答案要\(n!\)。拿\(10\)元的人同理,所以还要\(n!\)。所以这种变种的最后答案为\(h(n)*n!\)。
P1754 球迷购票问题

#include <bits/stdc++.h>

using namespace std;
typedef long long LL;
const int N = 30;
LL f[N];
int main() {
    int n;
    cin >> n;
    f[0] = 1;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= i; j++)
            f[i] += f[j - 1] * f[i - j];
    cout << f[n] << endl;
    return 0;
}

3、 二叉树构成问题

有\(n\)个结点,问总共能构成几种不同的二叉树。

我们可以假设,如果采用中序遍历的话,根结点第\(k\)个被访问到,则根结点的左子树有\(k-1\)个点、根结点的右指数有\(n-k\)个点。\(k\)的取值范围为\(1\)到\(n\)。讲到这里就很明显看得出是卡特兰数了。

AcWing 1645. 不同的二叉搜索树
没有超过\(long\) \(long\)的存储范围的话,可以使用递推;

#include <bits/stdc++.h>

using namespace std;
typedef long long LL;
const int N = 1010, MOD = 1e9 + 7;

int n;
int f[N];

int main() {
    cin >> n;

    f[0] = 1;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= i; j++)
            f[i] = (f[i] + (LL)f[j - 1] * f[i - j]) % MOD;

    cout << f[n] << endl;
    return 0;
}

AcWing 1317. 树屋阶梯
模拟,按照公式(1)进行模拟,需要使用高精度
黄海的题解

AcWing 1257. 二叉树计数

#include <bits/stdc++.h>
using namespace std;

const int N = 10010; // 5000*2+10
int primes[N], cnt;
bool st[N];
int a[N], b[N];

void get_primes(int n) {
    for (int i = 2; i <= n; i++) {
        if (!st[i]) primes[cnt++] = i;
        for (int j = 0; primes[j] * i <= n; j++) {
            st[i * primes[j]] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

int get(int n, int p) { // n!中p的次数
    int s = 0;
    while (n) n /= p, s += n;
    return s;
}

void mul(int a[], int b, int &len) {
    int t = 0;
    for (int i = 1; i <= len; i++) {
        t += a[i] * b;
        a[i] = t % 10;
        t /= 10;
    }
    while (t) {
        a[++len] = t % 10;
        t /= 10;
    }
    //去前导0
    while (len > 1 && !a[len]) len--;
}

int C(int a, int b, int c[]) {
    int len = 1;
    c[1] = 1;
    for (int i = 0; i < cnt; i++) {
        int p = primes[i];
        int s = get(a, p) - get(b, p) - get(a - b, p);
        while (s--) mul(c, p, len);
    }
    return len;
}

void sub(int a[], int b[], int &len) {
    int t = 0;
    for (int i = 1; i <= len; i++) {
        t = a[i] - b[i] - t;
        a[i] = (t + 10) % 10;
        t < 0 ? t = 1 : t = 0;
    }
    while (len > 1 && !a[len]) len--;
}

int main() {
    //加快读入
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);

    get_primes(N - 10);

    int n;
    cin >> n;
    int a1 = C(n + n, n, a);
    int b1 = C(n + n, n - 1, b); // bl下面没有用到,原因是两数相减,我们知道a>b,按着a的长度来就行了

    sub(a, b, a1);

    for (int i = a1; i >= 1; i--) printf("%d", a[i]);
    return 0;
}

4、\(01\)序列

给出一个\(n\),要求一个长度为\(2n\)的\(01\)序列,使得序列的任意前缀中\(1\)的个数不少于\(0\)的个数,有多少个不同的\(01\)序列?

以下为长度为\(6\)的序列:
111000 101100 101010 110010 110100

类比一下括号问题,此题就是一个祼的卡特兰数问题。

5、\(+1\) \(-1\)序列

\(n\)个\(+1\)和\(n\)个\(-1\)构成的\(2n\)项 \(a_1,a_2,···,a_{2n}\) ,其部分和满足非负性质,即\(a_1+a_2+···+a_k>=0,(k=1,2,···,2n)\) ,有多少个不同的此序列?

此典例解析与\(01\)序列解析一模一样,即此数列的个数等于第\(n\)个\(Catalan\)数,此处就不再赘述。

6、凸多边形划分

在一个\(n\)边形中,通过不相交于\(n\)边形内部的对角线,把\(n\)边形拆分为若干个三角形,问有多少种拆分方案?
如五边形有如下\(5\)种拆分方案:

如六边形有如下14种拆分方案:

结论:对凸\(n\)边形进行不同的三角形分割(只连接顶点对形成\(n\)个三角形)数为\(h[n-2]\)

这也是非常经典的一道题。我们可以这样来看,选择一个 基边 ,显然这是多边形划分完之后某个三角形的一条边。图中我们假设基边是\(p_1,p_n\),我们就可以用 \(p_1,p_n\) 和另外一个点假设为\(p_i\)做一个三角形,并将多边形分成三部分(要是\(i\)与\(1,n\)挨着的话,就是两部分),除了中间的三角形之外,一边是\(i\)边形,另一边是\(n−i+1\)边形。\(i\)的取值范围是\(2\)到\(n−1\)。所以本题的解

\[\large c(n)=c(2)*c(n−1)+c(3)*c(n−2)+...c(n−1)*c(2) \]

令\(f(i)=c(i+2)\)则

\[\large f(i)=f(0)f(i−1)+f(1)f(i−2)...+f(i−1)f(0) \]

很明显,这就是一个卡特兰数了。

四、链接资源

五、递推与递归的代码实现

#include <bits/stdc++.h>

using namespace std;
const int N = 10;

// 学习视频
// https://www.bilibili.com/video/BV1nE411A7ST
int g[N];

// 递归
int f(int n) {
    if (n == 0 || n == 1) return 1;
    int sum = 0;
    // f(0)*f(n-1)+f(1)*f(n-2)+....+f(n-1)*f(0)
    for (int i = 0; i < n; i++)
        sum += f(i) * f(n - 1 - i);
    return sum;
}
int main() {
    // 1、递推法
    g[0] = g[1] = 1;
    for (int i = 2; i < N; i++)
        for (int j = 0; j < i; j++)
            g[i] += g[j] * g[i - j - 1]; // 考虑思路:画括号法

    for (int i = 0; i < N; i++)
        cout << g[i] << endl;

    // 2 、递归法
    for (int i = 0; i < N; i++)
        cout << f(i) << endl;
    return 0;
}

标签:专题,frac,int,len,times,Catalan,2n,卡特兰
From: https://www.cnblogs.com/littlehb/p/17824213.html

相关文章

  • 【专题】2023智能汽车发展趋势洞察报告PDF合集分享(附原数据表)
    原文链接:https://tecdat.cn/?p=34219原文出处:拓端数据部落公众号至2025年,智能网联汽车产业规模将突破5000亿。预计具备L2及以上自动驾驶能力的车型销量将突破千万级,渗透率将跃升至42.9%。阅读原文,获取专题报告合集全文,解锁文末56份智能汽车相关行业研究报告。智能汽车发展水平......
  • 【专题】2022-2023中国跨境出口B2C电商报告PDF合集分享(附原数据表)
    报告链接:http://tecdat.cn/?p=32805原文出处:拓端数据部落公众号全球疫情的爆发对于全球经济和消费市场都带来了很大的冲击,特别是在消费者的消费行为和零售市场格局方面发生了重大变革。同时由于全球供应链的重新调整,产业分化现象也加速出现。中国跨境电商已经历了十年以上的发......
  • 【专题】2023年中国白酒行业消费白皮书报告PDF合集分享(附原数据表)
    原文链接:https://tecdat.cn/?p=34188原文出处:拓端数据部落公众号2023年中国白酒行业消费白皮书报告合集,总结了消费市场的两大传承和五大进化,以帮助白酒企业更好地理解消费者心理和供需变化,从而把握增长机会。两大传承包括争夺消费者的“第一口酒”以及品牌在消费决策中的关键作......
  • 【专题】2022年中国制造业数字化转型研究报告PDF合集分享(附原数据表)
    报告链接:http://tecdat.cn/?p=32145本文中所说的制造业数字化转型,指的是在制造企业的设计、生产、管理、销售及服务的每一个环节中,将新一代信息技术应用到制造企业的设计、生产、管理、销售及服务的每一个环节中,并可以以每一个环节中产生的数据为基础,展开控制、监测、检测、预测......
  • 【专题】中国服务机器人产业研究报告PDF合集分享(附原数据表)
    原文链接:https://tecdat.cn/?p=34144原文出处:拓端数据部落公众号仿生机器人作为一类结合了仿生学原理的机器人,具备自主决策和规划行动的能力,正逐渐进入大众视野。它们的核心技术要素包括感知与认知技术、运动与控制技术、人机交互技术和自主决策技术。阅读原文,获取专题报告合集......
  • 【专题】2023年中国手术机器人行业专题报告PDF合集分享(附原数据表)
    原文链接:https://tecdat.cn/?p=34144原文出处:拓端数据部落公众号仿生机器人作为一类结合了仿生学原理的机器人,具备自主决策和规划行动的能力,正逐渐进入大众视野。它们的核心技术要素包括感知与认知技术、运动与控制技术、人机交互技术和自主决策技术。阅读原文,获取专题报告合集......
  • 【专题】生成式AI:产业变革与机会论坛(演讲PPT)报告PDF合集分享(附原数据表)
    原文链接:https://tecdat.cn/?p=34132自18世纪中期工业革命以来,人类进入工业社会。在历次工业革命中,人类通过发明创造和管理革新,改进生产方式、降低成本、提高效率,随之而来的是生活、物质、文化、教育等各方面的变化,人际关系和社会结构也得以重塑。如今,数字化技术的发展为工业注入......
  • 【专题】数字美的智慧工业白皮书报告PDF合集分享(附原数据表)
    原文链接:https://tecdat.cn/?p=34132自18世纪中期工业革命以来,人类进入工业社会。在历次工业革命中,人类通过发明创造和管理革新,改进生产方式、降低成本、提高效率,随之而来的是生活、物质、文化、教育等各方面的变化,人际关系和社会结构也得以重塑。如今,数字化技术的发展为工业注入......
  • 【专题】2023工业视觉技术与应用白皮书报告PDF合集分享(附原数据表)
    原文链接:https://tecdat.cn/?p=34132自18世纪中期工业革命以来,人类进入工业社会。在历次工业革命中,人类通过发明创造和管理革新,改进生产方式、降低成本、提高效率,随之而来的是生活、物质、文化、教育等各方面的变化,人际关系和社会结构也得以重塑。如今,数字化技术的发展为工业注入......
  • 【专题】2023面向工业智能化时代的新一代工业控制体系架构白皮书报告PDF合集分享(附原
    原文链接:https://tecdat.cn/?p=34132自18世纪中期工业革命以来,人类进入工业社会。在历次工业革命中,人类通过发明创造和管理革新,改进生产方式、降低成本、提高效率,随之而来的是生活、物质、文化、教育等各方面的变化,人际关系和社会结构也得以重塑。如今,数字化技术的发展为工业注入......