首页 > 其他分享 >离散数学 第一章 命题逻辑 1-2 联结词

离散数学 第一章 命题逻辑 1-2 联结词

时间:2023-11-10 14:32:44浏览次数:65  
标签:真值 定义 下雨 合取 命题 离散数学 联结词 命题逻辑

在自然语言中,常常使用“或”,“与”,“但是”等一些联结词,对于这种联结词的使用,一般没有很严格的定义,因此有时显得不很确切。在数理逻辑中,复合命题是由原子命题与逻辑联结词组合而成,联结词是复合命题中的重要组成部分,为了便于书写和进行推演,必须对联结词作出明确规定并符号化。下面介绍各个联结词。
(1)否定
    定义1-2.1设p为一命题,p的否定是一个新的命题,记作┓p.若p为t, ┓p为f;若p为f,┓p为t.联结词"┓"表示命题的否定.否定联结词有时亦可记作"-".

命题p与其否定┓p的关系如表1-2.1所示.

表1-2.1


p

┓p

t

f

f

t


例      p:上海是一个大城市.

┓p:上海并不是一个大城市.

或    ┓p:上海是一个不大的城市.

这两个命题用同一符号┓p表示,因为在汉语中这两个命题具有相同的意义.

“否定”的意义仅是修改了命题的内容,我们仍把它看作为联结词,它是一个一元运算.

(2)合取

定义1-2.2 两个命题p和q的合取是一个复合命题,记作p∧q.当且仅当p、q同时为t时, p∧q为t,在其他情况下, p∧q的真值都是f.

联结词"∧"的定义如表1-2.2所示.

表1-2.2


p

q

p∧q

t

t

t

t

f

f

f

t

f

f

f

f


例如        p:今天下雨.

q:明天下雨.

上述命题的合取为    p∧q:今天下雨而且明天下雨.

p∧q:今天与明天都下雨.

p∧q:这两天都下雨.

显然只有当“今天下雨”与“明天下雨”都是真时,“这两天都下雨”才是真的.

合取的概念与自然语言中的”与”意义相似,但并不完全相同.

例如      p:我们去看电影.

q:房间里有十张桌子.

上述命题的合取为

p∧q:我们去看电影与房间里有十张桌子.

在自然语言中,上述命题是没有意义的,因为p与q没有内在联系,但作为数理逻辑中p和q的合取p∧q来说,它仍可成为一个新的命题,只要按照定义,在p、q分别取真值后, p∧q的真值也p∧q必确定.

命题联结词“合取”甚至可以将两个互为否定的命题联结在一起.这时,其真值永为f.

命题联结词“合取”也可以将若干个命题联结在一起.

“合取”是一个二元运算.

(3)析取

定义1-2.3 两个命题p和q的析取是一个复合命题,记作p∨q.当且仅当p、q同时为f时, p∨q的真值为f,否则p∨q的真值为t.

联结词“∨”的定义如表1-2.3所示.

表1-2.3


p

q

p∨q

t

t

t

t

f

t

f

t

t

f

f

f


从析取的定义可以看到,联结词∨与汉语中的“或”的意义也不完全相同,因为汉语中的“或”,可表示“排斥或”,也可以表示“可兼或”。

例1 今天晚上我在家看电视或去剧场看戏.

例2 他可能是100米或400米赛跑的冠军.

在例1中的“或”是“排斥或”,例2中的“或”是“可兼或”,而析取指的是“可兼或”.还有一些汉语中的“或”字,实际不是命题联结词.

例3 他昨天做了二十或三十道*题.

这个例子中的“或”字,只表示了*题的*似数目,不能用联结词“析取”表达,例3是个原子命题.

(4)条件

定义1-2.4 给定两个命题p和q,其条件命题是一个复合命题,记作p→q,读作“如果p,那么q”或“若p则q”.当且仅当p的真值为t,q的真值为f时, p→q的真值为f,否则p→q的真值为t.我们称p为前件,q为后件.

联结词“→”的定义如表1-2.4所示.

表1-2.4


p

q

p→q

t

t

t

t

f

f

f

t

t

f

f

t


 

例1 如果某动物为哺乳动物,则它必胎生.
例2 如果我得到这本小说,那么我今夜就读完它.
例3 如果雪是黑的,那么太阳从西边出.

上述三个例子都可用条件命题p→q表达.

在自然语言中,“如果…”与“那么…”之间常常是有因果联系的,否则就没有意义,但对条件命题p→q来说,只要p,q能够分别确定真值, p→q即成为命题.此外,自然语言中对“如果…,则…”这样的语句,当前提为假时,结论不管真假,这个语句的意义,往往无法判断.而在条件命题中,规定为“善意的推定”,即前提为f时,条件命题的真值都取为t.

在数学上和有些逻辑学的书籍中,“若p则q”亦可叫作p蕴含q,而本书在条件命题中将避免使用“蕴含”一词,因为在以后将另外定义“蕴含”这个概念.

命题联结词“→”亦可记作“é”.条件联结词亦是二远运算.

(5)双条件

定义1-2.5 给定两个命题p和q,其复合命题p«q称作双条件命题,读作“p当且仅当q”,当p和q的真值相同时, p«q的真值为t,否则p«q的真值为f.

联结词“«”的定义可如表1-2.5所示.

表1-2.5


p

q

p«q

t

t

t

t

f

f

f

t

f

f

f

t


 

例1 两个三角形全等,当且今当它们的三组对应边相等。

例2 燕子飞回南方,春天来了。

例3 2+2=4当且仅当雪是白的。

上面三个例子都可用双条件命题p«q来表示。与前面的联结词一样,双条件命题也可以不顾其因果联系,而只根据联结词定义确定真值。双条件联结词亦可记作“«”或”iff“。它亦是二元运算。



标签:真值,定义,下雨,合取,命题,离散数学,联结词,命题逻辑
From: https://blog.51cto.com/emanlee/8298911

相关文章

  • 离散数学 第一篇 数理逻辑
    第一篇数理逻辑    逻辑学是一门研究思维形式及思维规律的科学。逻辑规律就是客观事物在人的主观意识中的反映。逻辑学分为辨证逻辑与形式逻辑两种,前者是以辨证法认识论的世界观为基础的逻辑学,而后者主要是对思维的形式结构和规律进行研究的类似于语法的一门工具性学科。......
  • 离散数学蕴含式的问题
    如何理解数理逻辑中的蕴含?P→Q它表示自然语言的“如果…,则…”这种假言判断的,如果P为真命题,Q也为真命题时,P→Q是真命题,当P为真命题,而Q为假命题时,P→Q是一个假命题。比如张三说,“如果明天天不下雨(P),那么他去你家玩(Q)”,如果第二天天不下雨,他去了你家,他说了真话(P→Q为真),如果天不......
  • 离散数学 第一章 命题逻辑 1-1 命题及其表示法
    在数理逻辑中,为了表达概念,陈述理论和规则,常常需要应用语言进行描述,但是日常使用的自然语言进行描述,往往叙述时不够确切,也易产生二义性,因此就需要引入一种目标语言,这种目标语言和一些公式符号,就形成了数理逻辑的形式符号体系。所谓目标语言就是表达判断的一些语言的汇集,而判断就是对......
  • 《离散数学》双语专业词汇表 名词术语中英文索引
    《离散数学》双语专业词汇表set:集合subset:子集element,member:成员,元素well-defined:良定,完全确定brace:花括号representation:表示sensible:有意义的rationalnumber:有理数emptyset:空集Venndiagram:文氏图contain(in):包含(于)universalset:全集finite(infinite)set:有限(无限)集......
  • 离散数学
    数理逻辑分为命题逻辑和谓词逻辑两部分命题逻辑命题的真值只有两个:“真”或者“假”命题的表示:用大写字母表示逻辑连接词复合命题由若干个连结词、标点符号及原子命题复合构成的命题非$\neg$合取$\land$表示:并且、不但而且定义:两个命题P和Q的合取是一个复合命题,记作......
  • 数理逻辑 (1) 命题逻辑
    命题表达式命题语言的字符集由和变量和命题运算符构成,由于\(\land,\lor,\leftrightarrow\)都能用\(\lnot,\to\)代替,故定义符号表:\[\Sigma:=\{(,),\lnot,\to,A_n|n\in\mathbbN\}\]其中\(A_n\)代表了可数个命题变量命题逻辑的有限符号串定义为:\[\Sigma^......
  • 离散数学笔记——集合
    离散数学笔记——集合集合的概念集合是由一些确定的元素所组成的整体,其中的元素可以是任何事物定义:A={a1,a2,a3,...,an}表示集合的名称,{}表示集合的符号。a1,a2,a3,...an表示集合中的元素x∈A表示元素x属于集合A集合的特点集合没有重复元素集合......
  • 离散数学(屈婉玲)第二版 第五部分 图论 总结
    第5部分  图论前言:图是我们日常生活中一个很常见的概念,我们学习时会画思维导图,思维导图有节点,有路线;生活中会用到地图导航,有起点有终点有路线。而图论中的图便是生活中以及数学中具象事物抽象化的体现。前言的前言:若有错误之处或不完整之处希望指出,虚心接受任何批评和建议!一.......
  • 离散数学图论部分总结
    图论内容总结前言:图论这一部分内容可谓离散数学的点睛之笔,离散数学很多堆砌的概念在这章似乎都活过来了(可能是因为我刷算法题的原因),概念之间的联系更加的紧密。学完图论部分我感觉里面很多的知识点都非常重要,比如顶点度数,握手定理,树,而考点的话除了这些,还有求欧拉回路,最短路径问......
  • 离散数学代数系统部分总结
    代数系统部分总结前言:本节的重点在于掌握二元关系的相关概念,群的相关概念,主要的题型有计算运算表中的幺元、零元,证明某二元运算符合结合律,证明某代数系统为群,判定子群等。目录:二元运算及其性质代数系统群与子群二元运算及其性质设S为集合,函数f:SxS→S称为S上的二元运......