背景:
- Lagrange 对偶:对于优化问题
- 可以建立其 Lagrange 对偶函数 \(L(x,λ,\nu)=f_0(x)+\sum λ_if_i(x)+\sum \nu_jh_j(x)\) , \(g(λ,\nu)=\inf_x L(x,λ,\nu)\)。
- 无论 \(g(λ,\nu)\) 中 \(λ,\nu\) 怎么变化,它的值都一定是原目标函数的下界,因此其最大值 \(d^*=\sup_{(λ,\nu)}\inf_x L(x,λ,\nu)\) 也是原目标函数的下界。
- 原目标函数的最优值,可以写成如下形式: \(p^*=\inf_x\sup_{(λ,\nu)} L(x,λ,\nu)\)。因此有 \(d^*\le p^*\) , \(\sup_{(λ,\nu)}\inf_x L(x,λ,\nu) \le \inf_x\sup_{(λ,\nu)} L(x,λ,\nu)\) 。
极大极小不等式:
- 事实上,对于任意函数 f(w,z),都有 sup inf ≤ inf sup 成立,被称为极大极小不等式。
- 极大极小不等式: \(\sup_z \inf_w f(w,z) ≤ \inf_w \sup_z f(w,z)\) 。
- 证明:
- 首先,有 \(\inf_w f(w,z) ≤ f(w_0,z)\),z 在定义域上变化,\(\inf_w f(w,z)\) 是 \(f(w_0,z)\) 的逐点下界。
- 因此,可以有 \(\sup_z \inf_w f(w,z) ≤ \sup_z f(w_0,z)\) ,函数最大值(上界)也满足 ≥ 关系。
- 最后,令 \(w_0 = \arg\min_w [\sup_z f(w,z)]\),即可得到 \(\sup_z \inf_w f(w,z) ≤ \inf_w \sup_z f(w,z)\) 。
标签:不等式,Lagrange,极小,sup,inf,nu,对偶 From: https://www.cnblogs.com/moonout/p/17814543.html