考虑约束最优化问题:
\[\begin{aligned} &min &&f(x) \\ &s.t. &&c_i(x)\leq 0, i=1,2,...,l,\\ &&&h_i(x) = 0,i=l+1,l+2,...,n \end{aligned} \]拉格朗日化后为:
\[\begin{aligned} &\Delta L(x,\vec{\lambda}) = \Delta L(x,\lambda_1,\lambda_2,\cdots,\lambda_n) = \Delta(f(x,y)+\sum_{i=1}^{l}\lambda_i c_i(x)+\sum_{i=l+1}^{n}\lambda_i h_i(x)) = 0,\\ &s.t. \forall i \in \{1,2,...,l\}, \lambda_i \geq 0 \end{aligned} \]该拉格朗日函数为:
\[L(x,\vec{\lambda})=f(x)+\sum_{i=1}^{l}\lambda_i c_i(x)+\sum_{i=l+1}^{n}\lambda_i h_i(x),\forall i \in \{1,2,...,l\}, \lambda_i \geq 0 \]因为\(\forall i \in \{1,2,\cdots,l\}\),\(c_i(x) \leq 0,\lambda_i \geq 0;\forall i \in \{l+1,l+2,\cdots,n\}\),\(h_i(x) = 0\),所以:
\[L(x,\vec{\lambda}) = f(x)+\sum_{i=1}^{l}\lambda_i c_i(x)+\sum_{i=l+1}^{n}\lambda_i h_i(x) \leq f(x) \]就是说:对任意的\(x\),
那么,
则有: \[min(L(x,\vec{\lambda})) \leq min(f(x)) \]
于是,我们把拉格朗日的对偶函数定义为:
$$
g(\vec{\lambda}) = min(L(x,\vec{\lambda})) = min(f(x)+\sum_{i=1}^{l}\lambda_i c_i(x)+\sum_{i=l+1}^{n}\lambda_i h_i(x))
$$
函数$g$的意义为:现在,让我们看看拉格朗日对偶函数的凹性质:
函数$g(\vec{\lambda})$可以写成如下形式: $$ \begin{aligned} g(\vec{\lambda}) &= min(f(x)+\sum_{i=1}^{l}\lambda_i c_i(x)+\sum_{i=l+1}^{n}\lambda_i h_i(x))\\ &=min(f(x)+\left[\begin{matrix} c_1(x)&c_2(x)&\cdots&c_l(x)&h_{l+1}(x)&h_{l+2}(x)&\cdots&h_n(x) \end{matrix} \right] · \left[\begin{matrix} \lambda_1&\lambda_2&\cdots&\lambda_n \end{matrix} \right]) \end{aligned} $$ 其中, $$ \begin{aligned} &f(x) \in R,\\ &\forall i \in \{1,2,\cdots,l\},c_i(x) \leq R,\\ &\forall i \in \{l+1,l+2,\cdots,n\},h_i(x) = 0 \end{aligned} $$ 就是说,$k(\vec{\lambda})= \left[\begin{matrix} \vec{c(x)};\vec{h(x)}\end{matrix} \right] · \vec{\lambda}$是一个超平面(类似于$2 · x$,前面的‘;’表示拼接两个向量),$ \left[\begin{matrix} \vec{c(x)};\vec{h(x)}\end{matrix} \right]$就是一个超平面的系数。那么说明:
三维空间中的几个‘超平面’ |
左图在点(-5-5)处往上掰看的视图 |
从图中可以看到,不同的超平面相交后,如果我们对于一个\(\vec{\lambda}\),取,使函数\(k(\vec{\lambda})\),最小的值,那么可以看到:
参考文献:
标签:拉格朗,begin,end,matrix,sum,偶函数,可视化,vec,lambda From: https://www.cnblogs.com/hisi-tech/p/16736032.html如何理解拉格朗日对偶函数_PandaRELEASE的博客(上图的工作源自此文章的对对偶函数的解释)
凸优化中的对偶问题与共轭函数(对对偶函数的定义来自此文)