首页 > 其他分享 >易基因:WGBS等揭示丹参甲基化表征及DNA甲基化在丹参酮生物合成中的调控机制|科研速递

易基因:WGBS等揭示丹参甲基化表征及DNA甲基化在丹参酮生物合成中的调控机制|科研速递

时间:2023-08-24 11:46:42浏览次数:47  
标签:DNA 基因 基因组 甲基化 丹参酮 WGBS root

大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。

丹参(Salvia miltiorrhiza,S. miltiorrhiza)是一种具有重要经济价值和药用价值的模式药用植物,丹参的根会合成一组称为丹参酮(tanshinone)的二萜类亲脂性生物活性成分。丹参酮的生物合成和调控引起广泛关注。DNA甲基化变化在调控植物种子发育、茎和叶生长、春化、果实成熟和次级代谢等方面发挥着重要作用。然而丹参的甲基化组尚未得到分析,DNA甲基化在丹参酮合成过程中的调节机制仍然未知。

2023年05月31日,中国医学科学院药用植物研究所研究员卢善发团队在《Hortic. Res.》杂志在线发表了题为“Characteristics of Salvia miltiorrhiza methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis”的研究论文,该研究利用全基因组重亚硫酸盐测序(WGBS)等分析揭示了丹参酮积累与关键酶基因甲基化水平之间的相关性,并提示CHH甲基化水平在调控丹参酮生物合成中的意义。

标题:Characteristics of Salvia miltiorrhiza methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis(丹参的甲基化表征及DNA甲基化在丹参酮生物合成中的调控机制)

发表期刊:Horticulture Research

发表日期:2023年05月31日

影响因子:IF 8.7/ 1区

技术:全基因组重亚硫酸盐测序(WGBS)、RNA-seq等

样品及方法:

  • S. miltiorrhiza 系 99-3丹参在试验田自然条件下生长,三月底从两年生的植物中采集了March_root样品,7月下旬采集了July_root和July_leaf样本,收获的植物样本立即冷冻在液氮中直到使用。
  • BS-seq文库构建与全基因组重亚硫酸盐测序;亚硫酸盐测序数据比对和甲基化水平计算;差异甲基化分析
  • 转录组(RNA-seq)分析和qRT-PCR检测
  • sRNA测序和分析
  • 5-氮杂胞苷(5-Azacytidine)处理和丹参酮分析

 

摘要

本研究应用无偏好性的全基因组重亚硫酸盐测序(WGBS)分析了丹参根和叶的单碱基分辨率DNA甲基化组。比较分析揭示了CG、CHG和CHH序列的差异甲基化模式,以及DNA甲基化与基因和小RNA(sRNA)表达之间的关联。分析结果表明,低甲基化基因的表达水平较高,24nt sRNA(24-nucleotide sRNA)可能关键性参与丹参RdDM(RNA-directed DNA methylation)通路。DNA甲基化变异分析表明,CHH甲基化是造成差异的主要原因。Go富集分析表明,与March_root相比,hypoCHHDMR下游重叠基因在July_root的二萜生物合成过程显著富集。丹参酮生物合成相关酶基因如DXS2、CMK、IDI1、HMGR2、DXR、MDS、CYP76AH1、2OGD25和CYP71D373,在July_root基因启动子或下游区域中的CHH甲基化水平低于March_root。与March_root相比,July_root基因表达上调,DNA甲基化抑制剂5-氮杂胞苷的处理显著促进了丹参酮合成。研究结果揭示了DNA甲基化通过改变丹参酮关键酶基因启动子或下游CHH甲基化水平,在丹参酮生物合成中起重要调控作用。

 

研究结果:

(1)丹参DNA甲基化通路相关基因及整体DNA甲基化模式

表1:丹参中推定的DNA甲基化通路基因

图2:丹参(S. miltiorrhiza )DNA甲基化图谱。

  1. 在March_root中1-Mb bins范围内绘制DNA甲基化图谱。圆周上的单位显示兆值(Mb)。Track a,TE覆盖率(5%-18%/Mb)。Track b,基因密度(4-89/Mb)。Track c,CG甲基化水平(1.6%-87%/Mb)。Track d,CHG甲基化水平(1.2%-77.5%/Mb)。Track e,CHH甲基化水平(0.7%–32.6%/Mb)。
  2. 基因和TE的CG、CHG和CHH的DNA甲基化水平。
  3. 区域内子序列的密度。
  4. 区域内子序列的DNA甲基化水平。

 

(2)DNA甲基化在基因表达中的作用

图2:DNA甲基化在基因表达中的作用。

  1. 不同基因体(gene body)和2kb周围区域的DNA甲基化水平。根据表达水平将基因分为五组。将基因体和周围区域分别等分为20个bin进行甲基化分析。
  2. CG、CHG和CHH序列中五个基因组的平均DNA甲基化。
  3. 每个基因区域的低表达基因和高表达基因之间的DNA甲基化比较。1/3表达水平最高的基因中定义为高表达,1/3表达水平最低的基因被定义为低表达。Promoter,上游2kb。Downstream,下游2kb。

 

(3)sRNA与DNA甲基化的相关性

图3:DNA甲基化与24nt sRNA的相关性。

  1. March_root和July_root中sRNA的长度分布。
  2. 24nt sRNA图谱和10 nt周围区域的核苷酸频率分布。mC为有义链上的甲基化胞嘧啶;mC*为反义链上的甲基化胞嘧啶。
  3. DNA甲基化与24nt sRNA丰度之间的相关性。ρ:Spearman秩相关系数(P<0.001)。
  4. 24nt sRNA在March_root和July_root的基因/TE体和2kb周围区域的平均丰度(RPM)分布。

 

(4)不同丹参(S. miltiorrhiza)样品DNA甲基化变化特征

图4:丹参全基因组DNA甲基化比较分析。

  1. 三个样本中基因体和周围区域的CG、CHG和CHH序列中的DNA甲基化水平。
  2. 三个样本中TE体和周围区域的CG、CHG和CHH序列中的DNA甲基化水平。
  3. 三个样本中所有序列的整体甲基化水平。
  4. 三个样本中所有序列mC的整体甲基化水平。
  5. 柱状图显示三个样本中所有三个序列的mC数量。

 

(5)DNA甲基化参与萜烯(terpenes)的生物合成和代谢

图5:与March_root相比,July_root的 hypoDMR相关基因在生物学过程显著富集。启动子表示启动子区域与hypoDMR重叠的基因。Body表示gene body与hypoDMR重叠的基因。Downstream表示下游基因与hypoDMR重叠的基因。

图6:丹参酮生物合成上游通路中的DMR相关酶基因。

  1. 丹参酮生物合成的上游通路。包括质体中的MEP通路,细胞质、内质网(endoplasmic reticulum,ER)、过氧化物酶体和线粒体中的MVA通路,以及中间体二磷酸前体的生物合成。其中,MEP通路在1-脱氧-D-木酮糖5-磷酸合成酶(DXS)的催化下合成中间体1-脱氧-D -木酮糖5-磷酸(DXP)、2- C-甲基-D -赤藓糖醇4-磷酸(MEP)、4-二磷酸胞苷基-2-C-甲基-D-赤藓糖醇2-磷酸(CDP-ME)、4-二磷酸胞苷基-2- C-甲基-D-赤藓糖醇2-磷酸(CDP-ME2P)、2-C-甲基-D-环二磷酸(MEcPP)、1-羟基-2-甲基-2-丁烯基4-二磷酸(HMBPP)和异戊烯基二磷酸(IPP)。分别生成1-脱氧-D-木酮糖5-磷酸还原异构酶(DXR)、2- C-甲基-D-赤藓糖醇4-磷酸胞苷基转移酶(MCT)、4-二磷酸胞苷基-2- C -甲基-D-赤藓糖醇激酶(CMK)、2-C -甲基-赤藓糖醇2,4-环二磷酸合酶(MDS)、1-羟基-2-甲基-2-丁烯基4-二磷酸合酶(HDS)和1-羟基-2-甲基-2-(E)-丁烯基4-二磷酸还原酶(HDR)。MVA通路在乙酰辅酶A C-乙酰转移酶(AACT)、3-羟基-3-甲基戊二酰-CoA合成酶(HMGS)、3-羟-3-甲基戊四酰-CoA还原酶(HMGR)、甲戊酸激酶(MK)的催化下分别生成中间体3-羟基-3-甲戊二酰辅酶A(HMG-CoA),5-磷酸甲戊酸激酶(PMK)和甲戊酸焦磷酸脱羧酶(MDC)。IPP可以在异戊烯基二磷酸异构酶(IDI)的催化下转化为二甲基烯丙基二磷酸(DMAPP)。二磷酸前体香叶基香叶基二磷酸(GGPP)的形成在香叶基香叶基二磷酸盐合酶(GGPPS)的催化下进行。红色代表DMR相关基因。
  2. 整合基因组Viewer显示DMR相关酶基因的DNA甲基化水平

 

(6)mCHH在关键酶基因启动子和下游区域对丹参酮生物合成的调控

图7:丹参酮生物合成下游通路中的DMR相关酶基因。

  1. 丹参酮相关的二萜生物合成下游通路。红色代表DMR相关酶基因。实线箭头和虚线箭头分别表示已建立的关系和假设的关系。
  2. 综合基因组学Viewer显示DMR相关酶基因的DNA甲基化水平。

图8:5-氮杂胞苷在丹参毛状根丹参酮生物合成中的作用。

  1. 有或没有5-氮杂胞苷处理的丹参毛状根表型。
  2. 用不同浓度的5-氮杂胞苷处理30d后的丹参毛状根中二氢丹参酮I(dihydrotanshinone I)、隐丹参酮(cryptotanshinone)、丹参酮I(tanshinone I)和丹参酮IIA(tanshinone IIA)的含量。显示三次生物学重复的平均值。误差条代表SE。通过单因素方差分析计算5%水平的显著差异以不同的字母表示。

 

研究结论

本研究首次在丹参中绘制了单碱基分辨率的全基因组DNA甲基化图谱。结果表明, DNA低甲基化可以上调丹参的基因表达,24nt sRNA可能是RdDM通路的主要参与者。此外,DMC/DMR分析表明,差异甲基化主要发生在CHH序列中,与March_root相比,July_root中与hypoCHHDMR相关的基因在萜烯生物合成过程中富集。最重要的是,在July_root和March_root之间的14个DMR相关丹参酮生物合成酶基因中,包括DXS2、CMK、IDI1、HMGR2、DXR、MDS、CYP76AH1、2OGD25和CYP71D373在内的9个基因在July_root基因启动子区或下游区域表现出CHH低甲基化。进一步的DNA甲基化抑制剂处理促进了丹参毛状根中丹参酮的生物合成。总之,DNA甲基化可以通过丹参酮生物合成酶基因启动子和下游的CHH去甲基化来促进丹参酮的生物合成。本研究为丹参酮生物合成的表观遗传学调控机制提供了新的见解,将有助于进一步提高丹参活性化合物的产量。

 

关于易基因全基因组重亚硫酸盐测序(WGBS)

全基因组重亚硫酸盐甲基化测序(WGBS)可以在全基因组范围内精确的检测所有单个胞嘧啶碱基(C碱基)的甲基化水平,是DNA甲基化研究的金标准。WGBS能为基因组DNA甲基化时空特异性修饰的研究提供重要技术支持,能广泛应用在个体发育、衰老和疾病等生命过程的机制研究中,也是各物种甲基化图谱研究的首选方法。

易基因全基因组甲基化测序技术通过T4-DNA连接酶,在超声波打断基因组DNA片段的两端连接接头序列,连接产物通过重亚硫酸盐处理将未甲基化修饰的胞嘧啶C转变为尿嘧啶U,进而通过接头序列介导的 PCR 技术将尿嘧啶U转变为胸腺嘧啶T。

应用方向:

WGBS广泛用于各种物种,要求全基因组扫描(不错过关键位点)

  • 全基因组甲基化图谱课题
  • 标志物筛选课题
  • 小规模研究课题

技术优势:

  • 应用范围广:适用于所有参考基因组已知物种的甲基化研究;
  • 全基因组覆盖:最大限度地获取完整的全基因组甲基化信息,精确绘制甲基化图谱;
  • 单碱基分辨率:可精确分析每一个C碱基的甲基化状态。

易基因科技提供全面的DNA甲基化研究整体解决方案,详询易基因:0755-28317900。

参考文献:

Li J, Li C, Deng Y, Wei H, Lu S. Characteristics of Salvia miltiorrhiza methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis. Hortic Res. 2023 Jul;10(7):uhad114.

 

相关阅读:

科研速递 | 全基因组DNA甲基化测序(WGBS)揭示儿童哮喘增强子区域的整体低甲基化

项目文章 | WGBS等揭示SOX30甲基化在非梗阻性无精症中的表观遗传调控机制

项目文章|WGBS+RNA-seq揭示PM2.5引起男性生殖障碍的DNA甲基化调控机制

14种全基因组DNA甲基化测序(WGBS)标准分析比对软件的比较 | 生信专区

标签:DNA,基因,基因组,甲基化,丹参酮,WGBS,root
From: https://www.cnblogs.com/E-GENE/p/17653782.html

相关文章

  • 超声波DNA剪切仪行业市场调研及发展趋势报告2023-2029
    2023-2029全球超声波DNA剪切仪行业调研及趋势分析报告2022年全球超声波DNA剪切仪市场规模约亿元,2018-2022年年复合增长率CAGR约为%,预计未来将持续保持平稳增长的态势,到2029年市场规模将接近亿元,未来六年CAGR为%。超声波DNA剪切仪主要用于细菌细胞破碎,蛋白质抽提、二代测序样本......
  • 易基因:MeRIP-seq等揭示ALKBH5介导m6A去甲基化调控皮肤创面再上皮化分子机制
    大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。哺乳动物的损伤皮肤屏障完整性恢复通过创面愈合基本机制实现,这是一个包括凝血、炎症、再上皮化(re-epithelialization)、肉芽组织形成和疤痕重塑的多步骤过程。再上皮化是决定创面成功愈合的重要因素,再上皮化受损是创伤......
  • SNAT与DNAT原理及应用
     SNAT与DNAT原理及应用 当内部地址要访问公网上的服务时(如httpd访问),内部地址会主动发起连接,由路由器或者防火墙上的网关对内部地址做个地址转换,将内部地址的私有IP转换为公网的公有IP,网关的这个地址转换功能称为SNAT,主要用于内部共享IP访问外部网络。当内部地址需要提供对外......
  • 论文解读:《利用 DNA 进行人脸预测的研究进展》
    Title:AdvancementinHumanFacePredictionUsingDNADOI 10.3390/genes14010136期刊 Genes中科院分区:3区影像因子:3.5↓0.641作者 AamerAlshehhi;AliyaAlmarzooqi;KhadijaAlhammadi;NaoufelWerghi;G.K.Tay;etal出版日期 2023-01-03网址 https://www.mdpi.com/20......
  • 三代测序数据从碱基识别、基因组组装、变异检测和甲基化修饰检测等方面的内容
    王院长的报告涵盖了针对三代测序数据从碱基识别、基因组组装、变异检测和甲基化修饰检测等方面的内容。在基因组组装算法方面,王院长分享了其团队在二代和三代测序数据基因组组装算法设计与分析方面的成果和突破。其中,针对长读长测序的高错误率以及错误分布不均匀等问题,王院长介绍......
  • 论文解读:《基于深度多核学习的用于识别 DNA n4 -甲基胞嘧啶位点的高阶模糊推理系统》
    Title:Adeepmultiplekernellearning-basedhigher-orderfuzzyinferencesystemforidentifyingDNAN4-methylcytosinesites期刊:InformationSciences中科院分区:一区(计算机科学技术)影像因子:8.1↓0.133文章链接:https://doi.org/10.1016/j.ins.2023.01.149Websever:Github:......
  • 论文解读:《利用生成性深度学习预测用于DNA编辑的设计者重组酶》》
    期刊:naturecommunications影响因子:16.6↓1.094中科院分区:1区摘要位点特异性酪氨酸型重组酶是基因组工程的有效工具,首个工程化变体已显示出治疗潜力。到目前为止,设计重组酶对新DNA靶位点选择性的适应主要是通过定向分子进化的迭代循环实现的。虽然有效,定向分子进化方法是费力和耗......
  • SnapGene - DNA序列生物分析 5.3.1 mac/win版
    SnapGene是一款用于DNA序列分析和生物学实验设计的专业软件。它提供了强大的功能和直观的界面,帮助科学家和研究人员在分子生物学领域进行高效的实验规划和分析。下面将为您详细介绍SnapGene的特点和功能。点击获取SnapGenemac/win版 DNA序列编辑:SnapGene提供了易于......
  • iptables实战-SNAT|DNAT|负载均衡
    一、路由转发与SNAT实验环境说明:debian机器位于内网,有一个网卡ens38,ip地址172.16.1.2/24,网关为172.16.1.1(router的eth2)router机器位于内网和外网的边界,有2个网卡eth1和eth2,eth1地址192.168.124.247接外网,网关192.168.124.1;eth2地址172.16.1.1,连接debian在网卡配置正确的情况下,......
  • 易基因:单细胞DNA甲基化与转录组分析揭示猪生发泡卵母细胞成熟的关键调控机制|项目文章
    大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。在哺乳动物中,窦卵泡内的生发泡(germinalvesicle,GV)卵母细胞可以保持数月或数年的静止状态。促黄体生成素(luteinizinghormone,LH)激增促进了减数分裂(meiosis)恢复,使卵母细胞获得受精后和早期胚胎发育能力。同时还需......