目录
一、相似矩阵
1. 特征值与特征向量
(1)定义
若 \(n\) 阶矩阵 \(A\) 满足 \(A\alpha = \lambda\alpha (\lambda \neq 0)\),则 \(\lambda\) 是 \(A\) 的特征值,\(\alpha\) 是 \(A\) 的属于 \(\lambda\) 的特征向量,\(|\lambda E-A|=0\) 为 \(A\) 的特征多项式。
【注】特征向量不能是零向量!
(2)特征值的性质
(2.1)设 \(A\) 为 \(n\) 阶矩阵,特征值为 \(\lambda_1, \lambda_2, ..., \lambda_n\),则:
- \(\lambda_1 + \lambda_2 + ... + \lambda_n = tr(A) = a_{11} + a_{22} + ... + a_{nn}\)
- \(\lambda_1 \lambda_2 ··· \lambda_n = |A|\)
- 设 \(A\) 有特征值 \(\lambda\),则 \(\lambda\) 的重数 \(k \geq n - r(\lambda E - A)\)
- 若 \(r(A) \leq 1\),则 \(A\) 的特征值为 \(0,0,...,0,tr(A)\)(有 \(n-1\) 个 \(0\))
- 若 \(A\) 为三角矩阵或对角矩阵,则 \(A\) 的特征值为主对角线上的元素
- 若 \(\alpha \neq 0\),则矩阵 \(\alpha \beta^{\mathrm{T}}\) 的特征值为 \(0,0,...,0,\beta^{\mathrm{T}} \alpha\),其中特征值 \(\beta^{\mathrm{T}} \alpha\) 对应的特征向量为 \(\alpha\)
(2.2)设 \(A\) 为 \(n\) 阶实对称矩阵,则:
- \(A\) 的元素均为实数,且 \(A^{\mathrm{T}}=A\)
- \(A\) 的特征值必为实数
- \(A = \alpha\beta^{\mathrm{T}} + \beta\alpha^{\mathrm{T}}\) 为实对称矩阵
(3)特征向量的性质
(3.1)设 \(A\) 为 \(n\) 阶矩阵,则:
- \(A\) 的不同特征值对应的特征向量线性无关
- \(A\) 的不同特征值对应的特征向量之线性组合不是 \(A\) 的特征向量
- 设 \(A\) 有 \(k\) 重特征值 \(\lambda\),则属于 \(\lambda\) 的线性无关的特征向量个数 \(s = n-r(\lambda E-A) \leq k\)
- 设 \(A\) 有 \(k\) 重特征值 \(\lambda\),则属于 \(\lambda\) 的线性无关的特征向量之线性组合仍为 \(A\) 的特征向量
(3.2)设 \(A\) 为 \(n\) 阶实对称矩阵,则:
- \(A\) 的不同特征值的特征向量相互正交
- 设 \(A\) 有 \(k\) 重特征值 \(\lambda\),则属于 \(\lambda\) 的线性无关的特征向量个数 \(s = n-r(\lambda E-A) = k\)
(4)常用结论
矩阵 | \(A\) | \(kA\) | \(A^{n}\) | \(A+kE\) | \(f(A)\) | \(A^{-1}\) | \(A^*\) | \(P^{-1}AP\) | \(A^{\mathrm{T}}\) |
---|---|---|---|---|---|---|---|---|---|
特征值 | \(\lambda\) | \(k\lambda\) | \(\lambda^{n}\) | \(\lambda+k\) | \(f(\lambda)\) | \(\frac{1}{\lambda}\) | \(\frac{|A|}{\lambda}\) | \(\lambda\) | \(\lambda\) |
特征向量 | \(\alpha\) | \(\alpha\) | \(\alpha\) | \(\alpha\) | \(\alpha\) | \(\alpha\) | \(\alpha\) | \(P^{-1}\alpha\) | 不一定是 \(\alpha\) |
【注 1】关于 \(A\) 和 \(f(A)\) 的几个要点:
- 若 \(f(A) = 0\),则 \(A\) 的每个特征值 \(\lambda\) 都满足 \(f(\lambda)=0\)
- 若 \(f(\lambda)=0\) 求得解 \(\lambda_1, \lambda_2,..., \lambda_t\),则 \(A\) 的特征值可能有 \(\lambda_1, \lambda_2,..., \lambda_t\) 的其中几个(或一个都没有!),但不能确定 \(A\) 的特征值一定都有 \(\lambda_1, \lambda_2,..., \lambda_t\)
【注 2】一个可以快速计算矩阵 \(A\) 的特征值的技巧:将 \(A\) 拆分成数量矩阵 \(kE\) 加一个秩为 \(1\) 的矩阵 \(B\),于是 \(A=B+kE\),矩阵 \(B\) 的特征值容易写出,自然也就得到矩阵 \(A\) 的特征值了。
2. 相似关系
(1)相似的定义
设 \(A,B\) 为 \(n\) 阶矩阵,若存在可逆矩阵 \(P\),使得 \(P^{-1}AP=B\)(即 \(AP=PB\)),则称 \(A\) 与 \(B\) 相似,记作 \(A∽B\)。
(2)相似的性质
(2.1)对称性和传递性:
- 对称性:\(A∽B \Leftrightarrow B∽A\)
- 传递性:\(A∽B, B∽C \Rightarrow A∽C\)
(2.2)若 \(A∽B\) 且 \(P^{-1}AP=B\) 时,有:
- \(A∽B \Rightarrow A^{\mathrm{T}}∽B^{\mathrm{T}}\)
- \(A∽B \Rightarrow A^n∽B^n\)
- \(A∽B \Rightarrow A^{-1}∽B^{-1}\),并且 \(P^{-1} A^{-1} P = B^{-1}\)(当 \(A\) 可逆时)
- \(A∽B \Rightarrow A^*∽B^*\),并且 \(P^{-1} A^* P = B^*\)(当 \(A\) 可逆时)
- \(A∽B \Rightarrow f(A)∽f(B)\),并且 \(P^{-1} f(A) P = f(B)\)
- \(\eta\) 是 \(A\) 的特征向量 \(\Leftrightarrow P^{-1} \eta\) 是 \(B\) 的特征向量
- \(A∽B \Rightarrow |A|=|B|\)
- \(A∽B \Rightarrow |\lambda E-A| = |\lambda E-B|\)
- \(A∽B \Rightarrow r(A)=r(B)\)
- \(A∽B \Rightarrow tr(A)=tr(B)\)
- \(A∽B \Rightarrow A\) 和 \(B\) 有相同的特征值
【注 1】由 \(A∽B\) 可得出以上结论,但反过来,这些条件却并不能得到 \(A∽B\)。
【注 2】以上条件只要有一个不满足,即可判断 \(A\) 不相似于 \(B\)。
【注 3】若要判断 \(A∽B\),则可尝试求出 \(A\) 和 \(B\) 的对角矩阵,若它们都相似于同一个对角矩阵(即 \(A∽\Lambda,B∽\Lambda\)),则根据相似的传递性,可得 \(A∽B\)。
(2.3)设 \(A,B\) 均为 \(n\) 阶实对称矩阵,则:
- \(A\) 必相似于实对角矩阵,即 \(A∽\Lambda\)
- \(A∽B \Leftrightarrow A\) 和 \(B\) 有相同的特征值及重数 \(\Leftrightarrow |\lambda E-A| = |\lambda E-B|\)
【注】\(|\lambda E-A| = |\lambda E-B| \Leftrightarrow\) \(A\) 和 \(B\) 有相同的特征值及重数\(\Leftrightarrow A∽\Lambda,B∽\Lambda \Leftrightarrow A∽B\)
- 存在正交矩阵 \(Q\),使得 \(Q^{\mathrm{T}}AQ = Q^{-1}AQ = \Lambda\)
3. 相似对角化
(1)相似对角化的定义
设 \(n\) 阶对角矩阵 \(\Lambda = \mathrm{diag}(\lambda_1,\lambda_2,...,\lambda_n)\),其中 \(\lambda_i\) 为 \(A\) 的特征值, 若存在可逆矩阵 \(P\),使得 \(P^{-1}AP=\Lambda\)(即 \(AP=P\Lambda\)),则称 \(A\) 可相似对角化,简称为可对角化,记作 \(A∽\Lambda\)。
(2)可对角化的判别
(设 \(A\) 为 \(n\) 阶矩阵)
- \(A\) 有 \(n\) 个不同的特征值 \(\Rightarrow A∽\Lambda\)
- \(A∽\Lambda \Leftrightarrow A\) 有 \(n\) 个线性无关的特征向量
- \(A∽\Lambda \Leftrightarrow A\) 的 \(k\) 重特征值 \(\lambda\) 有 \(k\) 个线性无关的特征向量 \(\Leftrightarrow k = n-r(\lambda E-A)\)
【注】当 \(k=1\) 时,\(k = n-r(\lambda E-A)\) 一定成立,因此只需对 \(k \geq 2\) 的特征值进行判断。
- \(A\) 满足 \((A-aE)(A-bE)=0 (a \neq b) \Leftrightarrow A∽\Lambda\),且特征值满足 \((\lambda-a)(\lambda-b)=0\)
- 实对称矩阵必可相似对角化,且正交于对角矩阵
(3)相似对角化的步骤
(3.1)一般矩阵 \(A\) 的相似对角化的步骤:
- 由 \(|\lambda E - A|=0\) 求出 \(A\) 的特征值 \(\lambda_1,\lambda_2,...,\lambda_n\)
- 对每个 \(\lambda_i\),由 \((\lambda_i E - A)x=0\) 求出 \(A\) 的一组特征向量 \(\alpha_1,\alpha_2,...,\alpha_n\)
- 令 \(P=(\alpha_1,\alpha_2,...,\alpha_n)\),当 \(P\) 可逆时,有 \(P^{-1}AP=\Lambda= \mathrm{diag}(\lambda_1,\lambda_2,...,\lambda_n)\)
【注】有些题目没有给出具体的矩阵 \(A\),只给定一些已知的特征值和特征向量,要求反求出矩阵 \(A\)。有两种解法:
- 传统的解法:求出对角矩阵 \(\Lambda = \mathrm{diag}(\lambda_1,\lambda_2,\lambda_3)\) 和可逆矩阵 \(P=(\alpha_1,\alpha_2,\alpha_3)\),然后由 \(P^{-1}AP=\Lambda\) 得到 \(A=P \Lambda P^{-1}\)。这种解法需要对 \(P\) 求逆(需使用初等行变换求出),然后进行两次矩阵乘法。
- 较快的解法:求解矩阵 \(A\) 的过程实际上是在求解一个矩阵方程。因为 \(P^{-1}AP=\Lambda \Leftrightarrow AP=P\Lambda \Leftrightarrow A(\alpha_1,\alpha_2,\alpha_3)=(\lambda_1 \alpha_1,\lambda_2 \alpha_2,\lambda_3 \alpha_3)\),取转置即得矩阵方程 \((\alpha_1,\alpha_2,\alpha_3)^{\mathrm{T}} A^{\mathrm{T}} = (\lambda_1 \alpha_1,\lambda_2 \alpha_2,\lambda_3 \alpha_3)^{\mathrm{T}}\),于是求解 \(A^{\mathrm{T}}\) 只需进行初等行变换:\((\alpha_1^\mathrm{T},\alpha_2^\mathrm{T},\alpha_3^\mathrm{T} | \lambda_1 \alpha_1^\mathrm{T},\lambda_2 \alpha_2^\mathrm{T},\lambda_3 \alpha_3^\mathrm{T}) \rightarrow (E|A^{\mathrm{T}})\)。显然该法比传统解法要更快!
(3.2)实对称矩阵 \(A\) 的相似对角化的步骤:
- 由 \(|\lambda E - A|=0\) 求出 \(A\) 的特征值 \(\lambda_1,\lambda_2,...,\lambda_n\)
- 对每个 \(\lambda_i\),由 \((\lambda_i E - A)x=0\) 求出 \(A\) 的一组特征向量 \(\alpha_1,\alpha_2,...,\alpha_n\)
- 对单重特征值的特征向量进行单位化;对多重特征值对应的特征向量进行施密特正交化和单位化
- 令正交矩阵 \(Q=(\eta_1,\eta_2,...,\eta_n)\),有 \(Q^{\mathrm{T}}AQ = Q^{-1}AQ=\Lambda= \mathrm{diag}(\lambda_1,\lambda_2,...,\lambda_n)\)
【注】有些题目没有给出具体的实对称矩阵 \(A\),只给出其中一个或两个特征向量 \(\alpha\),若需要算出其他的特征向量,应使用“实对称矩阵的不同特征值的特征向量相互正交”这一性质来求解。
(3.3)施密特正交化
\[\left\{ \begin{aligned} &\beta_1 = \alpha_1 \\ &\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1,\beta_1)} \beta_1 \\ &\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1,\beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2,\beta_2)} \beta_2 \\ \end{aligned} \right. \]【注】施密特正交化的推导过程以及其延伸出的一些解题思路,可见本人专栏的另一篇文章。
(3.4)单位化
\[\left\{ \begin{aligned} &\eta_1 = \beta_1 / ||\beta_1|| \\ &\eta_2 = \beta_2 / ||\beta_2|| \\ &\eta_3 = \beta_3 / ||\beta_3|| \\ \end{aligned} \right. \](\(||\beta_i||\) 为向量的长度)
令正交矩阵 \(Q=(\eta_1,\eta_2,\eta_3)\),有 \(Q^{\mathrm{T}}AQ = Q^{-1}AQ=\Lambda= \mathrm{diag}(\lambda_1,\lambda_2,\lambda_3)\)
二、合同矩阵
1. 二次型
(1)二次型的定义
- 二次型:\(f(x_1,x_2,...,x_n)=x^{\mathrm{T}}Ax\),其中 \(A\) 是实对称矩阵。
- 标准二次型:若交叉项的系数为 \(0\),则得到标准二次型,\(A\) 是实对角矩阵。
- 规范二次型:若每一项去掉系数,只保留正负,则得到规范二次型,\(A\) 是实规范对角矩阵,即 \(\left[ \begin{matrix} E_p & & \\ & -E_q & \\ & & O \end{matrix} \right]\),其中 \(p\) 为正惯性指数(正平方项个数),\(q\) 为负惯性指数(负平方项个数)。
【注】标准二次型是不唯一的,规范二次型是唯一的。
- 可逆线性变量替换:对二次型 \(f(x_1,x_2,...,x_n)=x^{\mathrm{T}}Ax\) 引进新变量 \(y_1,y_2,...,y_n\) 用来表示 \(x_1,x_2,...,x_n\):
将其中的系数矩阵记为 \(C\),若 \(C\) 为可逆矩阵,则称为可逆线性变量替换,上式又可写成:\(x=Cy\),所以二次型可化为:\(f(x_1,x_2,...,x_n)=y^{\mathrm{T}}C^{\mathrm{T}}ACy\),可逆线性变量替换后的二次型为 \(g(y_1,y_2,...,y_n)=C^{\mathrm{T}}AC\)。
(2)惯性定理
标准二次型 \(f=x^{\mathrm{T}}Ax\) 中,\(A\) 是实对称矩阵,\(p\) 为正惯性指数(正平方项个数),\(q\) 为负惯性指数(负平方项个数),则 \(r(A)=p+q\)。
【注】必须是在实对称矩阵的条件下!
(3)最大和最小值
设 \(n\) 元二次型 \(f=x^{\mathrm{T}}Ax\),其中实对称矩阵 \(A\) 的特征值 \(\lambda_1,\lambda_2,...,\lambda_n\) 中最大值为 \(\lambda_{max}\),最小值为 \(\lambda_{min}\),且 \(x^{\mathrm{T}}Ax = M > 0\),则有:
\[M \lambda_{min} \leq x^{\mathrm{T}}Ax \leq M \lambda_{max} \](4)二次型的标准化(合同对角化)
(4.1)正交变换法
- 由 \(|\lambda E - A|=0\) 求出二次型矩阵 \(A\) 的特征值 \(\lambda_1,\lambda_2,...,\lambda_n\)
- 对每个 \(\lambda_i\),由 \((\lambda_i E - A)x=0\) 求出 \(A\) 的一组特征向量 \(\alpha_1,\alpha_2,...,\alpha_n\)
- 对单重特征值的特征向量进行单位化;对多重特征值对应的特征向量进行施密特正交化和单位化
- 令正交矩阵 \(Q=(\eta_1,\eta_2,...,\eta_n)\),有可逆线性变量替换 \(x=Qy\),把原二次型化为标准二次型,\(A\) 的特征值 \(\lambda_1,\lambda_2,...,\lambda_n\) 对应标准二次型中每一项的系数
(4.2)拉格朗日配方法
- 若二次型中有平方项 \(x_i^2\) 和交叉项 \(x_ix_j\),则把含有 \(x_i\) 的项集中起来进行配方
- 若二次型中仅有交叉项 \(x_ix_j\),则进行以下换元,此时将产生出平方项,按第一种方法进行配方:
- 也可使用公式 \(ab = \frac{(a+b)^2 - (a-b)^2}{4}\) 产生出平方项
【例】用配方法将二次型 \(f(x_1,x_2,x_3) = x_1x_2 + x_2x_3 + x_1x_3\) 化为标准型。
【解】根据交叉项 \(x_1x_2\) 可进行以下换元(当然也可以挑选其他交叉项进行换元):
\[\left\{ \begin{aligned} & x_1 = y_1 + y_2 \\ & x_2 = y_1 - y_2 \\ & x_3 = y_3 \\ \end{aligned} \right. \]所以 \(f(x_1,x_2,x_3) = y_1^2 + y_2^2 + 2y_1y_3\),配方得 \(f(x_1,x_2,x_3) = (y_1+y_3)^2 - y_2^2 - y_3^2\)。
2. 合同关系
(1)合同的定义
设 \(n\) 阶矩阵 \(A,B\),若存在可逆实矩阵 \(C\),使得 \(B=C^{\mathrm{T}}AC\),则称 \(A\) 和 \(B\) 合同,记为 \(A≃B\)。
【注】在矩阵合同的定义中,并没有要求合同的矩阵一定是实对称矩阵。
(2)合同的性质
(2.1)一般矩阵的性质(设 \(A,B\) 为一般矩阵):
- 两个二次型(分别对应实对称矩阵 \(A,B\))可用可逆线性变量替换互相转化 \(\Leftrightarrow A≃B\)
- \(A≃B \Leftrightarrow\) 正、负惯性指数相同,即 \(p_A=p_B, q_A=q_B\)
- \(A≃B \Leftrightarrow\) 正、负特征值个数相同
- \(A≃B \Rightarrow r(A)=r(B)\)
【注】\(A≃B \Rightarrow p_A=p_B, q_A=q_B \Rightarrow r(A)=r(B)\),但 \(r(A)=r(B) \nRightarrow A≃B\),只能推出 \(A\) 和 \(B\) 等价(若 \(A,B\) 同型)。
- \(A∽B \nLeftrightarrow A≃B\)
【注】这是在一般矩阵下的得出的结论:
- 合同不一定相似:很容易理解,合同只能推出矩阵 \(A,B\) 所对应的对角矩阵元素的正负个数相等,但无法推出对角矩阵元素均相等。
- 相似不一定合同:由 \(A∽B\) 可得 \(P^{-1}AP=B\),但无法保证 \(P^{-1} = P^{\mathrm{T}}\)。
(2.2)实对称矩阵的性质(设 \(A,B\) 为实对称矩阵):
- 实对称矩阵必能合同对角化,即 \(C^{\mathrm{T}}AC = \Lambda\)
- 若 \(A\) 为实对称矩阵,则:\(A≃B \Rightarrow B\) 为实对称矩阵
【证明】\(A≃B \Rightarrow C^{\mathrm{T}}AC = B \Rightarrow (C^{\mathrm{T}}AC)^{\mathrm{T}} = (B)^{\mathrm{T}} \Rightarrow C^{\mathrm{T}}A^{\mathrm{T}}C = B^{\mathrm{T}} = B\),说明 \(B\) 也为实对称矩阵。
- \(A∽B \Rightarrow A≃B\),但 \(A∽B \nLeftarrow A≃B\)
【注】这是在实对称矩阵下的得出的结论:
- 相似是合同的特例:实对称矩阵必与对角矩阵相似,可得 \(A∽B \Rightarrow A∽B∽\Lambda\),所以 \(A,B\) 有相同的特征值,即 \(A,B\) 有相同的正、负惯性指数,由惯性定理知 \(A≃B\)。
- 合同不一定相似:很容易理解,合同只能推出矩阵 \(A,B\) 所对应的对角矩阵元素的正负个数相等,但无法推出对角矩阵元素均相等。
3. 正定矩阵
(1)正定的定义
设二次型 \(f(x_1,x_2,...,x_n) = x^{\mathrm{T}}Ax\),其中 \(A\) 是实对称矩阵。若对任意 \(x \neq 0\),都有 \(f(x_1,x_2,...,x_n) = x^{\mathrm{T}}Ax > 0\),则称二次型 \(f\) 正定,称 \(A\) 为正定矩阵。
【注 1】判定矩阵 \(A\) 正定时,需要检验 \(A\) 是否为实对称矩阵。
【注 2】若二次型 \(f\) 正定,则仅当 \(x = 0\) 时,\(f(x_1,x_2,...,x_n) = x^{\mathrm{T}}Ax = 0\)。
(2)正定的性质
- \(A\) 正定 \(\Rightarrow A\) 为实对称矩阵
- \(A\) 正定 \(\Leftrightarrow A\) 的特征值全部大于 \(0\)
- \(A\) 正定 \(\Leftrightarrow A\) 的顺序主子式全大于 \(0\)
- \(A\) 正定 \(\Leftrightarrow \exist可逆P\),使得 \(A=P^{\mathrm{T}}P \Leftrightarrow A≃E\)
- \(A\) 正定 \(\Rightarrow a_{ii} > 0\)
- \(A\) 正定 \(\Rightarrow |A| > 0\)
- \(A\) 正定 \(\Rightarrow A^k, A^{-1}, A^*\) 均正定
- \(\left[ \begin{matrix} A & O \\ O & B \end{matrix} \right]\) 正定 \(\Leftrightarrow A,B\) 均正定
- 对于实矩阵 \(A^{\mathrm{T}}A\):
- \(A^{\mathrm{T}}A\) 的负惯性指数为 \(0\)
- 若 \(r(A)=n\),则 \(A^{\mathrm{T}}A\) 正定
【证明】(1)首先证明矩阵 \(A^{\mathrm{T}}A\) 为实对称矩阵。因为 \((A^{\mathrm{T}}A)^{\mathrm{T}} = A^{\mathrm{T}} (A^{\mathrm{T}})^{\mathrm{T}} = A^{\mathrm{T}} A\),所以 \(A^{\mathrm{T}}A\) 为实对称矩阵。
(2)现在用特征值证明其正定。设 \(\lambda\) 是矩阵 \(A^{\mathrm{T}}A\) 的特征值,所对应的特征向量为 \(\alpha\),则有:\(A^{\mathrm{T}}A \alpha = \lambda \alpha\),等式两边同乘 \(\alpha^{\mathrm{T}}\) 得:\(\alpha^{\mathrm{T}} A^{\mathrm{T}}A \alpha = \lambda \alpha^{\mathrm{T}} \alpha\),化为内积形式即:\((A\alpha,A\alpha) = \lambda (\alpha, \alpha)\),显然 \(\lambda \geq 0\),矩阵 \(A^{\mathrm{T}}A\) 负惯性指数为 \(0\)。
(3)当 \(r(A)=n\) 时,表示 \(Ax=0\) 仅有非零解,所以 \(A \alpha \neq 0\),\((A\alpha,A\alpha) > 0\),显然 \(\lambda > 0\),矩阵 \(A^{\mathrm{T}}A\) 正定。
三、等价关系
1. 等价的定义
若矩阵 \(A\) 经过有限次初等变换变成矩阵 \(B\),则称矩阵 \(A\) 与矩阵 \(B\) 等价,记为 \(A \cong B\)。
2. 等价的判定
若 \(A,B\) 是同型矩阵,则:
- \(A \cong B \Leftrightarrow A\) 经过初等变换得到 \(B\)
- \(A \cong B \Leftrightarrow PAQ=B\),其中 \(P,Q\) 可逆
- \(A \cong B \Leftrightarrow r(A) = r(B)\)