目录
公式
\[\left\{ \begin{aligned} &\beta_1 = \alpha_1 \\ &\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1,\beta_1)} \beta_1 \\ &\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1,\beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2,\beta_2)} \beta_2 \\ \end{aligned} \right. \]推导
令
\[\left\{ \begin{aligned} &\beta_1 = \alpha_1 \\ &\beta_2 = \alpha_2 + k \beta_1 \\ &\beta_3 = \alpha_3 + m_1 \beta_1 + m_2 \beta_2 \\ \end{aligned} \right. \]已知 \(\beta_1,\beta_2,\beta_3\) 两两正交,即:
\[\left\{ \begin{aligned} &\beta_1^{\mathrm{T}} \beta_2 = 0 & ①\\ &\beta_1^{\mathrm{T}} \beta_3 = 0 & ②\\ &\beta_2^{\mathrm{T}} \beta_3 = 0 & ③\\ \end{aligned} \right. \]由 ① 得:
\[\begin{aligned} & \beta_1^{\mathrm{T}} \beta_2 = 0 \\ \Rightarrow & \beta_1^{\mathrm{T}} (\alpha_2+k \beta_1) = 0 \\ \Rightarrow & \beta_1^{\mathrm{T}} \alpha_2 + k \beta_1^{\mathrm{T}} \beta_1 = 0 \\ \Rightarrow & k = -\frac{\beta_1^{\mathrm{T}} \alpha_2}{ \beta_1^{\mathrm{T}} \beta_1} \end{aligned} \]由 ② 得:
\[\begin{aligned} & \beta_1^{\mathrm{T}} \beta_3 = 0 \\ \Rightarrow & \beta_1^{\mathrm{T}} (\alpha_3 + m_1 \beta_1 + m_2 \beta_2) = 0 \\ \Rightarrow & \beta_1^{\mathrm{T}} \alpha_3 + m_1 \beta_1^{\mathrm{T}} \beta_1 + m_2 \beta_1^{\mathrm{T}} \beta_2 = 0 \\ \Rightarrow & \beta_1^{\mathrm{T}} \alpha_3 + m_1 \beta_1^{\mathrm{T}} \beta_1 = 0 \\ \Rightarrow & m_1 = -\frac{\beta_1^{\mathrm{T}} \alpha_3}{ \beta_1^{\mathrm{T}} \beta_1} \end{aligned} \]由 ③ 得:
\[\begin{aligned} & \beta_2^{\mathrm{T}} \beta_3 = 0 \\ \Rightarrow & \beta_2^{\mathrm{T}} (\alpha_3 + m_1 \beta_1 + m_2 \beta_2) = 0 \\ \Rightarrow & \beta_2^{\mathrm{T}} \alpha_3 + m_1 \beta_2^{\mathrm{T}} \beta_1 + m_2 \beta_2^{\mathrm{T}} \beta_2 = 0 \\ \Rightarrow & \beta_2^{\mathrm{T}} \alpha_3 + m_2 \beta_2^{\mathrm{T}} \beta_2 = 0 \\ \Rightarrow & m_2 = -\frac{\beta_2^{\mathrm{T}} \alpha_3}{ \beta_2^{\mathrm{T}} \beta_2} \end{aligned} \]拓展
以上推导的思路还可以应用于下题中:
【例】设 \(\alpha_1,\alpha_2,\alpha_3\) 线性无关,\(A\alpha_1=\alpha_1, A\alpha_2=2(\alpha_1+\alpha_2), A\alpha_3=3(\alpha_1+\alpha_2+\alpha_3)\),求 \(A\) 的特征值和特征向量。
【解】待定系数法:
\[\begin{aligned} & A(\alpha_1 + m\alpha_2 + n\alpha_3) = \alpha_1 + 2m(\alpha_1+\alpha_2) + 3n(\alpha_1+\alpha_2+\alpha_3) \\ \Rightarrow & \lambda (\alpha_1 + m\alpha_2 + n\alpha_3) = \alpha_1 + 2m(\alpha_1+\alpha_2) + 3n(\alpha_1+\alpha_2+\alpha_3) \\ \Rightarrow & \lambda \alpha_1 + m \lambda \alpha_2 + n \lambda \alpha_3 = (1+2m+3n)\alpha_1 + (2m+3n)\alpha_2 + 3n\alpha_3 \end{aligned} \]得到以下方程组:
\[\left\{ \begin{aligned} &1+2m+3n = \lambda & ①\\ &2m+3n = m \lambda & ②\\ &3n = n \lambda & ③\\ \end{aligned} \right. \]由 ③ 可分为两种情形:
(1)\(n \neq 0, \lambda = 3\)
将 \(\lambda = 3\) 代入 ①、②:
\[\left\{ \begin{aligned} &1+2m+3n = 3 & ①\\ &2m+3n = 3m & ②\\ \end{aligned} \right. \]解得:
\[\left\{ \begin{aligned} &m = \frac{2}{3} \\ &n = \frac{2}{9} \\ \end{aligned} \right. \]代入到最初的式子可得:
\[\begin{aligned} & A(\alpha_1 + m\alpha_2 + n\alpha_3) = \alpha_1 + 2m(\alpha_1+\alpha_2) + 3n(\alpha_1+\alpha_2+\alpha_3) \\ \Rightarrow & A(\alpha_1 + \frac{2}{3} \alpha_2 + \frac{2}{9} \alpha_3) = \alpha_1 + \frac{4}{3}(\alpha_1+\alpha_2) + \frac{2}{3}(\alpha_1+\alpha_2+\alpha_3) \\ \Rightarrow & A(\alpha_1 + \frac{2}{3} \alpha_2 + \frac{2}{9} \alpha_3) = 3(\alpha_1 + \frac{2}{3} \alpha_2 + \frac{2}{9} \alpha_3) \\ \end{aligned} \](2)\(n = 0\)
将 \(n = 0\) 代入 ①、②:
\[\left\{ \begin{aligned} &1+2m = \lambda & ①\\ &2m = m \lambda & ②\\ \end{aligned} \right. \]由 ② 又分为两种情形:
(2-1)\(m \neq 0, \lambda = 2\)
\(\lambda = 2\) 代入 ① 得:\(1+2m=2\),解得 \(m=\frac{1}{2}\)
将已求得结果代入最初式子得:
\[A (\alpha_1 + \frac{1}{2} \alpha_2) = 2 (\alpha_1 + \frac{1}{2} \alpha_2) \](2-2)\(m = 0\)
\(m = 0\) 代入 ① 得:\(\lambda = 1\)
将已求得结果代入最初式子得:\(A \alpha_1 = \alpha_1\)
(3)总结
所以 \(A\) 的特征值为 \(3,2,1\)
对应的特征向量为 \(\alpha_1 + \frac{2}{3} \alpha_2 + \frac{2}{9} \alpha_3,\alpha_1 + \frac{1}{2} \alpha_2,\alpha_1\)
标签:frac,Rightarrow,施密特,正交,beta,alpha,aligned,mathrm From: https://www.cnblogs.com/Mount256/p/17605535.html