首页 > 其他分享 >TensorFlow05.3 神经网络-FashionMNIST实战

TensorFlow05.3 神经网络-FashionMNIST实战

时间:2023-06-18 17:55:26浏览次数:51  
标签:loss test 28 db TensorFlow05.3 神经网络 FashionMNIST tf model

一.数据的加载:

(x, y), (x_test, y_test) = datasets.fashion_mnist.load_data()
print(x.shape, y.shape)

image

二.数据的处理

def preprocess(x, y):
    x = tf.cast(x, dtype=tf.float32) / 255. #归一化
    y = tf.cast(y, dtype=tf.int32)
    return x,y
	
batchsz = 128

db = tf.data.Dataset.from_tensor_slices((x,y)) # 变成tensor类型
db = db.map(preprocess).shuffle(10000).batch(batchsz) # 打散加分成一个batch

db_test = tf.data.Dataset.from_tensor_slices((x_test,y_test)) #测试集也一样,便于后面的检验
db_test = db_test.map(preprocess).batch(batchsz)

db_iter = iter(db)
sample = next(db_iter)
print('batch:', sample[0].shape, sample[1].shape)

image

三.定义5层神经网络

model = Sequential([
    layers.Dense(256, activation=tf.nn.relu), # [b, 784] => [b, 256]
    layers.Dense(128, activation=tf.nn.relu), # [b, 256] => [b, 128]
    layers.Dense(64, activation=tf.nn.relu), # [b, 128] => [b, 64]
    layers.Dense(32, activation=tf.nn.relu), # [b, 64] => [b, 32]
    layers.Dense(10) # [b, 32] => [b, 10], 330 = 32*10 + 10
])
model.build(input_shape=[None, 28*28]) # 测试,查看其结构
model.summary()

image
四。梯度下降:

# w = w - lr*grad
optimizer = optimizers.Adam(lr=1e-3) # 下面有解释

def main():


    for epoch in range(30):


        for step, (x,y) in enumerate(db): #既要遍历其索引,又要遍历其值,就加一个enumerate(db)

            # x: [b, 28, 28] => [b, 784]
            # y: [b]
            x = tf.reshape(x, [-1, 28*28])

            with tf.GradientTape() as tape:
                # [b, 784] => [b, 10]
                logits = model(x)
                y_onehot = tf.one_hot(y, depth=10)
                # [b]
                loss_mse = tf.reduce_mean(tf.losses.MSE(y_onehot, logits))
                loss_ce = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
                loss_ce = tf.reduce_mean(loss_ce)

            grads = tape.gradient(loss_ce, model.trainable_variables) #注意我们之前都是在前面定义w1,w2,w3--b1,b2,但是这次是在前面直接定义了神经网络,然后我们想要获取到里面查看里面可训练的变量就用model.trainable_variables
            optimizer.apply_gradients(zip(grads, model.trainable_variables))# 自动更新grads和variable中的参数


            if step % 100 == 0:
                print(epoch, step, 'loss:', float(loss_ce), float(loss_mse))

image
这个里面有三个要说的函数是
1.keras.optimizers.Adam()

optimizer=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.99, epsilon=1e-08, decay=0.0)
就是我们在做梯度下降的时候w=w-lr*grad,然后我们每一次都这样跟新的话,会很麻烦,所以就有了一个这个函数,然后这个还能和下面optimizer.apply_gradients(自动更新),一起用。其实这个函数就是类似于一个学习率,用来控制梯度下降的大小,在监督学习中我们使用梯度下降法时,学习率是一个很重要的指标,因为学习率决定了学习进程的快慢(也可以看作步幅的大小)。如果学习率过大,很可能会越过最优值,反而如果学习率过小,优化的效率可能很低,导致过长的运算时间,所以学习率对于算法性能的表现十分重要
参数详解:
keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.99, epsilon=1e-08, decay=0.0)
lr:float> = 0.学习率
beta_1:float,0 <beta <1。一般接近1。一阶矩估计的指数衰减率
beta_2:float,0 <beta <1。一般接近1。二阶矩估计的指数衰减率
epsilon:float> = 0,模糊因子。如果None,默认为K.epsilon()。该参数是非常小的数,其为了防止在实现中除以零
decay:float> = 0,每次更新时学习率下降
然后我们这里用了一个固定的步长。

2.model.trainable_variables

model.trainable_variables
我们之前做的时候,都是定义一个variable类型的w1,w2,--b1,b2,但是现在我们都是用Sequential来定义的这个神经网络,但是后面求梯度的时候我们需要用到这些值,所以我们后面求梯度的时候我们可以用这个grads = tape.gradient(loss_ce, model.trainable_variables)

3.for step, (x,y) in enumerate(db):

for step,(x,y) in enumerate(db):
这个enumerate,为什么加这个呢,因为我们加了一个step,我们如果需要循环索引的话,得加上这个

4.apply_gradients

apply_gradients(grads_and_vars,global_step=None,name=None)
功能:更新参数。
参数:grads_and_vars,(gradient, variable) 对的列表,所以我们需要zip(zip(grads, model.trainable_variables))函数
返回值:无返回值,把计算出来的梯度更新到变量上去。
这个函数就是,我们在w = w - lr*grad计算完梯度之后,我们需要更新这里面的Variable变量,但是我们没有定义w1,w2,--b1,b2,所以它给我们提供了一个函数apply_gradients

五。检验准确性:

 # test
        total_correct = 0
        total_num = 0
        for x,y in db_test:

            # x: [b, 28, 28] => [b, 784]
            # y: [b]
            x = tf.reshape(x, [-1, 28*28])
            # [b, 10]
            logits = model(x)
            # logits => prob, [b, 10]
            prob = tf.nn.softmax(logits, axis=1)
            # [b, 10] => [b], int64,
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32) #这个很重要,这个一定要换一下
            # pred:[b]
            # y: [b]
            # correct: [b], True: equal, False: not equal
            correct = tf.equal(pred, y)
            correct = tf.reduce_sum(tf.cast(correct, dtype=tf.int32))

            total_correct += int(correct)
            total_num += x.shape[0]

        acc = total_correct / total_num
        print(epoch, 'test acc:', acc)

标签:loss,test,28,db,TensorFlow05.3,神经网络,FashionMNIST,tf,model
From: https://www.cnblogs.com/lipu123/p/17489328.html

相关文章

  • TensorFlow05.3 神经网络反向传播算法-多层感知机梯度(理论知识)
    首先这个是链式法则:如果扩展到多层感知机的话:我们在学这个的时候首先知道一个东西:所以这个整体的步骤就是:1.2.3.......
  • TensorFlow05.3 神经网络反向传播算法-链式法则
    1BasicRule2Productrule3QuotientRule4Chainrule(链式法则)在这个神经网络中:......
  • TensorFlow05.2 神经网络反向传播算法-单输出感知机和多输出感知机及其梯度
    1单输出感知机在这里我们可以看到,\(W_2,1^1\)其中他的下标第一个2,表示的连着上一层的x2,下标第一个1代表着连着下一侧的x1。然后上标1代表着第一层。E是做了一个loss处理。\(X_i^1\)这个下标的i代表当前层数节点的编号,然后这个1代表着第1层。\(W_i,j^k\),i表示上一层的节点编......
  • [ML从入门到入门] 初识人工神经网络、感知机算法以及反向传播算法
    前言人工神经网络(Artificialneuralnetworks,ANNs)被广泛认为诞生于20世纪四五十年代,其核心理论可以追溯到19世纪初 Adrien-MarieLegendre发明的最小二乘法,而在今天,经过了半个世纪互联网和计算机技术的迅猛发展,这片耕耘良久的沃土重新掀起了机器学习的研究热潮。本文主要......
  • TensorFlow05-3 神经网络损失函数(误差计算)
    ▪MSE▪CrossEntropyLoss(针对分类问题)▪HingeLoss1MSE一般这个N都会取一个banch。或者取到一个banch*类别个数b这里有三种求MSE的方法:loss1=tf.reduce_mean(tf.squaare(y-out))loss2=tf.squre(tf.norm(y-out))/(banch*类别个数b)loss3=tf.reduce_mean(tf.losse......
  • TensorFlow05.2-神经网络输出方式
    这里的输出方式有这几种:1......
  • TensorFlow05.1-神经网络全连接层
    ▪Matmul▪NeuralNetwork▪DeepLearning▪Multi-Layer1.Matmulout=f(x@w+b)out=relu(x@w+b)我们只看第一位h00,h10,其中类似于一个激活函数(relu函数)在一层中我们包括这一层的权值和偏置在里面的。HerecomesDeepLearning:在以前不叫作DeepLearning叫......
  • 一文详解图卷积神经网络
    本文是文章AGentleIntroductiontoGraphNeuralNetworks的个人笔记,强烈建议大家去体验原文的交互式阅读,以及李沐老师的讲解。我的宗旨是尽量使用浅显易懂的白话,而不是晦涩的术语,把概念和理论讲清楚。开始吧!作为一枚资(ruo)深(ji)NLPer,我常见的神经网络输入是一段文本序......
  • 基于神经网络的大模型在图像识别中的应用
    目录1.引言2.技术原理及概念3.实现步骤与流程4.示例与应用5.优化与改进6.结论与展望随着深度学习技术的不断发展,特别是在计算机视觉领域,基于神经网络的大模型在图像识别中的应用越来越广泛。这些模型能够在处理大量图像数据的同时,准确地识别出各种物体和场景,取得了令人瞩目......
  • 基于MFCC特征提取和神经网络的语音信号识别算法matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:     2.算法涉及理论知识概要        在语音识别(SpeechRecognition)和话者识别(SpeakerRecognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scaleFrequencyCepstralCoefficients,简称MFCC)。根据人耳听觉机理......