首页 > 其他分享 >浅谈斐波那契数列和卡特兰数

浅谈斐波那契数列和卡特兰数

时间:2023-05-24 21:23:03浏览次数:62  
标签:begin frac 浅谈 sqrt 斐波 bmatrix end 卡特兰 数列

斐波那契数列

斐波那契数列是我们较为熟悉的一类数列了,在学习递归和递推的时候我们就已经能求解 \(n\) 较小的情况了;斐波那契数列的定义如下:

\[\left\{\begin{matrix} F_{n}=0& n=0\\ F_{n}=1& n=1\\ F_{n}=F_{n-1}+F_{n-2}& n\ge 2 \end{matrix}\right. \]

卢卡斯数列

卢卡斯数列经常作为一个工具来研究斐波那契数列,所以这里也会提到一部分

其定义如下:

\[\left\{\begin{matrix} L_{n}=2& n=0\\ L_{n}=1& n=1\\ L_{n}=L_{n-1}+L_{n-2}& n\ge 2 \end{matrix}\right. \]

斐波那契数列通项公式

第 \(n\) 个斐波那契数列可以在 \(O(n)\) 的时间内用递推来解决,但我们有更快速的方式来计算。

例如我们有下面的公式

\[F_{n}=\frac{(\frac{1+\sqrt{5}}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}}{\sqrt{5}} \]

证明:

由上面我们知道斐波那契数列的递推公式为

\[F_{n}=F_{n-1}+F_{n-2}(n\ge 2) \]

我们设

\[F_{n}-\lambda F_{n-1}=\mu(F_{n-1}-\lambda F_{n-2}) \]

为什么这么设呢,这是因为我们发现构造一个等差数列的话是很难的,所以我们尝试构造一个等比数列 \(b_{n}=q\times b_{n-1}\),按照上面的设法,把 \(F_{n}-\lambda F_{n-1}\) 看作 \(b_{n}\) 即可发现我们构造了一个等比数列的公式,然后我们后面才能利用等比数列的通项公式进行求解。

拆开移项得到

\[\left\{\begin{matrix} \lambda+\mu=1\\ -\lambda\times \mu=1 \end{matrix}\right. \]

解得

\[\left\{\begin{matrix} \lambda=\frac{1+\sqrt{5}}{2}\\ \mu=\frac{1-\sqrt{5}}{2} \end{matrix}\right. \text{或} \left\{\begin{matrix} \lambda=\frac{1-\sqrt{5}}{2}\\ \mu=\frac{1+\sqrt{5}}{2} \end{matrix}\right. \]

将其带回原式子可以得到

\[\left\{\begin{matrix} F_{n}-\frac{1+\sqrt{5}}{2}F_{n-1}=\frac{1-\sqrt{5}}{2}(F_{n-1}-\frac{1+\sqrt{5}}{2}F_{n-2})\\ F_{n}-\frac{1-\sqrt{5}}{2}F_{n-1}=\frac{1+\sqrt{5}}{2}(F_{n-1}-\frac{1-\sqrt{5}}{2}F_{n-2}) \end{matrix}\right. \]

然后根据等比数列通项公式,我们得到

\[\left\{\begin{matrix} F_{n}-\frac{1+\sqrt{5}}{2}F_{n-1}=(\frac{1-\sqrt{5}}{2})^{n-2}(F_{2}-\frac{1+\sqrt{5}}{2}F_{1})\\ F_{n}-\frac{1-\sqrt{5}}{2}F_{n-1}=(\frac{1+\sqrt{5}}{2})^{n-2}(F_{2}-\frac{1-\sqrt{5}}{2}F_{1}) \end{matrix}\right. \]

然后上式乘以 \(\frac{1-\sqrt{5}}{2}\) ,下式乘以 \(\frac{1+\sqrt{5}}{2}\) 化简就可以得到上面的通项公式了。

或者可以看看上面这位b站大佬的证明过程,比上面的方法更好理解。

需要注意的是,这个公式对于精度要求较高。

卢卡斯数列的通项公式

其实他的通项公式和斐波那契的很像

\[L_{n}=(\frac{1+\sqrt{5}}{2})^{n}+(\frac{1-\sqrt{5}}{2})^{n} \]

事实上有:

\[\frac{L_{n}+F_{n}\sqrt{5}}{2}=(\frac{1+\sqrt{5}}{2})^{n} \]

其实还有一个式子:

\[L_{n}^{2}-5F_{n}^{2}=-4 \]

矩阵加速求斐波那契数列

我们在之前的题目遇见的求斐波那契数列第 \(n\) 项的值范围都是很小的,因为递归的速度太慢,如果数据范围到达了 \(10^{18}\) 那么我们递推也是一定 TLE 的,所以这个时候就需要用到我们的矩阵加速递推。

设 \(Fib(n)\) 表示一个 \(1\times 2\) 的矩阵 \(\begin{bmatrix}F_{n}&F_{n+1}\end{bmatrix}\) 。我们希望依据 \(Fib(n-1)=\begin{bmatrix}F_{n-1}&F_{n-2}\end{bmatrix}\) 推出 \(Fib(n)\)。

试着来推导一个矩阵 \(\text{base}\),使 \(Fib(n-1)\times \text{base}=Fib(n)\),也就是 \(\begin{bmatrix}F_{n-1}&F_{n-2}\end{bmatrix}\times \text{base}=\begin{bmatrix}F_{n}&F_{n-1}\end{bmatrix}\)。

因为 \(F_{n}=F_{n-1}+F_{n-2}\),所以 \(\text{base}\) 矩阵第一列一定是 \(\begin{bmatrix}1\\1\end{bmatrix}\),这样才能在进行乘法运算的时候才能令 \(F_{n-1}\) 与 \(F_{n-2}\) 相加,从而得出 \(F_{n}\)。同理,为了得出 \(F_{n-1}\),矩阵 \(\text{base}\) 的第二列应该为 \(\begin{bmatrix}1\\0\end{bmatrix}\)。

综上所述,\(\text{base}=\begin{bmatrix}1&1\\1&0\end{bmatrix}\) ,原式化为 \(\begin{bmatrix}F_{n-1}&F_{n-2}\end{bmatrix}\times \begin{bmatrix}1&1\\1&0\end{bmatrix}=\begin{bmatrix}F_{n}&F_{n-1}\end{bmatrix}\)。

定义初始矩阵 \(ans=\begin{bmatrix}F_{2}&F_{1}\end{bmatrix}=\begin{bmatrix}1&1\end{bmatrix}\),\(\text{base}=\begin{bmatrix}1&1\\1&0\end{bmatrix}\)。那么,\(F_{n}\) 就等于 \(ans\times \text{base}^{n-2}\) 这个矩阵的第一行第一列的元素,也就是 \(\begin{bmatrix}1&1\end{bmatrix}\times \begin{bmatrix}1&1\\1&0\end{bmatrix}^{n-2}\) 的第一行第一列的元素。

注意矩阵乘法不满足交换律,所以不能将两个矩阵反过来,另外,对于 \(n\le 2\) 的情况,可以直接输出 \(1\)。

P1962斐波那契数列 - 洛谷

参考代码:

#include<bits/stdc++.h>
#define int long long
#define P 1000000007
#define N 110
using namespace std;
int n;
struct sb{int m[N][N];}ans,base;
inline sb cheng(sb a,sb b,int ok)
{
    sb c;
    for(int i=1;i<=ok;i++)
    {
          for(int j=1;j<=ok;j++)
          {
              c.m[i][j]=0;
            for(int k=1;k<=ok;k++)
              c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%P;
          }
    }
    return c;
}
inline sb jzksm(sb x,int y)
{
    sb res=x;y--;
    while(y)
    {
        if(y&1)res=cheng(res,x,2);
        x=cheng(x,x,2);
        y>>=1;
    }
    return res;
}
signed main()
{
    cin>>n;
    if(n==1||n==2){puts("1");return 0;}
    ans.m[1][1]=1;ans.m[1][2]=1;
    base.m[1][1]=1;base.m[1][2]=1;
    base.m[2][1]=1;base.m[2][2]=0;
    base=jzksm(base,n-2);
    ans.m[1][1]=(base.m[1][1]+base.m[1][2])%P;
    cout<<ans.m[1][1]<<endl;
    return 0;
}

快速倍增法

我们可以用上面的方法得到下面两个等式:

\[F_{2k}=F_{k}(2F_{k+1}-F_{k}) \]

\[F_{2k+1}=F_{k+1}^{2}+F_{k}^{2} \]

于是我们可以通过这样的方法快速计算两个相邻的斐波那契数(常数比矩阵法小)。返回值是一个二元组 \((F_{n},F_{n+1})\)。

性质

这里只列出一部分。

  1. 卡西尼性质:\(F_{n-1}F_{n+1}-F_{n}^{2}=(-1)^{n}\)

  2. 附加性质:\(F_{n+k}=F_{k}F_{n+1}+F_{k-1}F_{n}\)

  3. 性质二中 \(k=n\),我们得到 \(F_{2n}=F_{n}(F_{n+1}+F_{n-1})\)

  4. 由性质三可以归纳证明,\(\forall k\in \mathbb{N} ,F_{n}\mid F_{nk}\)

  5. 上述性质可逆,即 \(\forall F_{a}\mid F_{b},a\mid b\)

  6. GCD 性质:\(\gcd(F_{m},F_{n})=F_{\gcd(n,m)}\)

斐波那契数列和卢卡斯数列

不难发现有个上面提到的式子和三角函数公式很像:

\[\frac{L_{n}+F_{n}\sqrt{5}}{2}=(\frac{1+\sqrt{5}}{2})^{n} \]

\[\cos nx+i\sin nx=(\cos x+i\sin x)^{n} \]

上面两个式子很像。

\[L_{n}^{2}-5F_{n}^{2}=-4 \]

\[\cos ^{2}x+\sin ^{2}x=1 \]

这两个式子也很像。

那么我们大胆推测一下,是不是卢卡斯数列构成的图像很像余弦函数,斐波那契数列构成的图像很像正弦函数?

根据:

\[(\frac{1+\sqrt{5}}{2})^{m}(\frac{1+\sqrt{5}}{2})^{n}=(\frac{1+\sqrt{5}}{2})^{n+m} \]

可以得到两下标之和的等式:

\[2L_{m+n}=5F_{n}F_{m}+L_{n}L_{m} \]

\[2F_{m+n}=F_{m}L_{n}+L_{m}F_{n} \]

于是推论就有二倍下标的等式:

\[L_{2n}=L_{n}^{2}-2(-1)^{n} \]

\[F_{2n}=F_{n}L_{n} \]

这也是一种快速倍增下标的办法。

模意义下周期性

考虑模 \(p\) 意义下的斐波那契数列,可以容易地使用抽屉原理证明,该数列是有周期性的。考虑模意义下前 \(p^{2}+1\) 个斐波那契数对(两个相邻数配对):

\[(F_{1},F_{2}),(F_{2},F_{3}),...,(F_{p^{2}+1},F_{p^{2}+2}) \]

\(p\) 的剩余系大小为 \(p\),意味着在前 \(p^{2}+1\) 个数对中必有两个相同的数对,于是这两个数对可以往后生成相同的斐波那契数列,那么他们就是周期性的。

卡特兰数

卡特兰数也算是比较常见的一种

其问题灵活多变,较为经典的有:

  • 在圆上选 \(2n\) 个点,将这些点成对连接起来使得所得到的 \(n\) 条线段不相交的方案数。

  • 一个栈的进栈序列为 \(1,2,3,\dots,n\) 有多少个不同的可能的出栈序列。

  • \(n\) 个节点可以构造多少个不同的二叉树?

如果是给定两种操作,一个操作的个数不超过另一种操作的个数,或者两种操作没有交集,求合法操作方案的总数,那么一般就是卡特兰数。

其对应的序列为 \(1,1,2,5,14,42,132...\)

递推式

为了防止冲突,用 \(H(i)\) 来表示第 \(i\) 个卡特兰数。

该递推关系的解为:

\[H_{n}=\frac{C_{2n}^{n}}{n+1}(n\ge 2) \]

\[H_{n}= \left\{\begin{matrix} 1&n=0\\ 1&n=1\\ \sum_{i=1}^{n}H_{i-1}H_{n-i}&n\ge 2 \end{matrix}\right. \]

\[H_{n}=\frac{H_{n-1}(4n-2)}{n+1} \]

实际上最常用的是第一个公式的变形:

\[H_{n}=C_{2n}^{n}-C_{2n}^{n-1} \]

例题:P1044[NOIP2003 普及组] 栈 - 洛谷

直接套用公式二即可。

参考代码:

#include<bits/stdc++.h>
#define int long long
#define N 1000100 
using namespace std;
int n,c[N];
signed main()
{
	c[0]=1;
	cin>>n;
	for(int i=1;i<=n;i++)
	  c[i]=(c[i-1]*(4*i-2))/(i+1);
	cout<<c[n]<<endl;
	return 0; 
}

封闭形式

卡特兰数的递推式我们前面说过了,也就是这个:

\[H_{n}=\sum_{i=0}^{n-1}H_{i}H_{n-i-1}(n\ge 2) \]

其中 \(H_{0}=1,H_{1}=1\) 设它的普通生成函数为 \(H(x)\)

我们发现卡特兰数的递推式与卷积的形式很相似,因此我们用卷积来构造关于 \(H(x)\) 的方程:

\[H(x)=\sum_{n\ge 0}^{}H_{n}x^{n} \]

\[=1+\sum_{n\ge 1}^{}\sum_{i=0}^{n-1}H_{i}x^{i}H_{n-i-1}x^{n-i-1}x \]

\[=1+x\sum_{i\ge 0}^{}H_{i}x^{i}\sum_{n\ge 0}^{}H_{n}x^{n} \]

\[=1+xH^{2}(x) \]

解得:

\[H(x)=\frac{1\pm\sqrt{1-4x}}{2x} \]

那么这就产生了一个问题:我们应该取哪一个根呢?我们将其分子有理化:

\[H(x)=\frac{2}{1\mp\sqrt{1-4x}} \]

代入 \(x=0\),我们得到的是 \(H(x)\) 的常数项,也就是 \(H_{0}\)。当 \(H(x)=\frac{2}{1+\sqrt{1-4x}}\) 的时候有 \(H(0)=1\),满足要求。而另一个解会出现分母为 \(0\) 的情况,舍去。

因此我们得到了卡特兰数生成函数的封闭形式:

\[H(x)=\frac{1-\sqrt{1-4x}}{2x} \]

标签:begin,frac,浅谈,sqrt,斐波,bmatrix,end,卡特兰,数列
From: https://www.cnblogs.com/Multitree/p/17429558.html

相关文章

  • 浅谈 树上带权最长最短路径,决策包容性与点分树
    树上带权最长最短路径,决策包容性与点分树\(\text{preface}\)最近学习了点分树相关的内容,也碰巧见识到了许多……树上路径问题(非负权),最长或是最短,有的可以用点分治(树)解决,有的可以用线段树解决,有的需要深层次挖掘性质,就在这里做一个小小地总结了一些另类的方法。1.树上带权最长......
  • 蓝桥杯2022年第十三届决赛真题-斐波那契数组(动态规划)
    题目描述如果数组A=(a0,a1,···,an−1)满足以下条件,就说它是一个斐波那契数组:n≥2;a0=a1;对于所有的i(i≥2),都满足ai=ai−1+ai−2。现在,给出一个数组A,你可以执行任意次修改,每次修改将数组中的某个位置的元素修改为一个大于0的整数。请问最......
  • 浅谈TCP协议的发生过程
    1.TCP协议1.1TCP协议的性质面向连接的、可靠的、基于字节流至于为什么面向连接,又为什么可靠,基于字节流的,等后面便可知道.1.2TCP协议栈收发数据的四个阶段创建套接字连接服务器收发数据断开服务器连接,删除套接字1.3TCP头部格式2.创建套接字2.1首先理解......
  • 斐波那契数列的实现
    斐波那契数列(Fibonaccisequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(......
  • 浅谈POI数据在互联网旅游领域中的应用(一)
    首先了解下,什么是POI?POI是英文"PointofInterest"的缩写,直译过来叫“兴趣点”,有的人也叫它“信息点”。简单来说就是可以用经纬度表示的、对人有意义的地图上的点。我们平时使用滴滴打车的上车地点、使用大众点评发掘的各种餐厅、你家楼下的公共厕所,只要对你有意义,都可以算POI数据......
  • 2020校招生面试浅谈
    最近在招聘校招生,也看了很多简历,结合自己面试的经历,简单聊聊校招生该如何准备面试。一个漂亮的简历简历首先要漂亮,至少要有一定的美化和包装,对于校招生来说,学校教育背景、学习成绩是最重要的,项目和实习则是锦上添花。对于项目和实习经验,个人觉得有即可,不要求非常的好,不一定要去世界......
  • 浅谈同余3(扩展中国剩余定理,扩展BSGS)
    距离上一篇已经四个月了,我来填坑了上一篇:$浅谈同余2(扩展欧几里得,中国剩余定理,BSGS)$(https://www.cnblogs.com/xyy-yyds/p/17418472.html)0x50扩展BSGS$O(\sqrtn)$【模板】扩展BSGS/exBSGS 题目背景题目来源:SPOJ3105Mod题目描述给定$a,p,b$,求满足$a^x≡b\pmodp......
  • 浅谈同余1(常用定理和乘法逆元)
    点个赞吧,球球了~下一篇:$浅谈同余2(扩展欧几里得,中国剩余定理,BSGS)$https://www.acwing.com/file_system/file/content/whole/index/content/7882318/ $\LaTeX$太多了,分成几个部分0x00总写(瞎说)同余是数学中非常重要的东西,这里会写出同余的基本运用若$a\bmodm=b\bmo......
  • Python编写输出斐波那契数列的前n项
    以下是一个使用Python编写的程序代码,可以计算并输出斐波那契数列的前n项(n由用户输入):n=int(input("请输入斐波那契数列的项数:"))a,b=0,1foriinrange(n):print(b,end="")a,b=b,a+b代码解释:用户输入斐波那契数列的项数n,并使用int()函数将输入的字符串......
  • 浅谈物联网平台的重要性以及建设展望
    随着物联网(InternetofThings,简称IoT)技术的快速发展,物联网平台已成为连接各种设备,处理大量数据,并为用户提供智能服务的关键工具。在此背景下,深入理解物联网平台的重要性,以及对其未来建设的展望显得尤为重要。物联网平台在链接设备、管理数据以及提供服务等方面具有重要价值:在设......