首页 > 其他分享 >Approximation Theory and Method ch7

Approximation Theory and Method ch7

时间:2023-04-21 15:44:16浏览次数:34  
标签:right Theory mathscr ldots Approximation xi ch7 any left

Approximation Theory and Method ch7

part 1, part 2, part 3, ch7, 命名乱了——致敬微软

... as the sign of \(p(x)\). It follows that \(p^{*}\) is a best minimax approximation from \(\mathscr{A}\) to \(f\) if there is no function \(p\) in \(\mathscr{A}\) that satisfies the condition

\[\left[f(x)-p^{*}(x)\right] p(x)>0, \quad x \in \mathscr{Z}_{\mathrm{M}}\quad \text {. (7.6) } \]

Because of the way in which the exchange algorithm works, we generalize the problem of minimizing \(\|f-p\|_{\infty}\), to the problem of minimizing the expression

\[\max _{x \in \mathscr{X}}|f(x)-p(x)|, \quad p \in \mathscr{A}\quad \text{(7.7)} \]

where \(\mathscr{Z}\) is any closed subset of \([a, b]\), which may be \([a, b]\) itself, but in the exchange algorithm the set \(\mathscr{Z}\) is composed of a finite number of points. The next theorem allows \(\mathscr{Z}\) to be general.

Theorem 7.1 Let \(\mathscr{A}\) be a linear subspace of \(\mathscr{C}[a, b]\), let \(f\) be any function in \(\mathscr{C}[a, b]\), let \(\mathscr{Z}\) be any closed subset of \([a, b]\), let \(p^{*}\) be any element of \(\mathscr{A}\), and let \(\mathscr{Z}_{\mathrm{M}}\) be the set of points of \(\mathscr{Z}\) at which the error \(\left\{\left|f(x)-p^{*}(x)\right| ; x \in\right.\) \(\mathscr{Z}\) } takes its maximum value. Then \(p^{*}\) is an element of \(\mathscr{A}\) that minimizes expression (7.7) if and only if there is no function \(p\) in \(\mathscr{A}\) that satisfies condition (7.6).

不严谨说,如果能找到一个 \(p(x) \in \mathscr A\), 使得 \(p(x)\) 和 \(f(x)-p^{*}(x)\) 符号一样,那么这个 \(p(x)\) 肯定可以让 \(\|f-p\|_{\infty}\) 更小——通过找一个比较合适的 \(\theta\),这个 \(\theta\) 要足够小——小到在每一个点 \(x \in \mathscr Z_M\) 处都不会减爆. 因为可以任意小,所以这样的 \(\theta\) 肯定存在.

\[\max _{x \in \mathscr{I}}\left|e^{*}(x)-\theta p(x)\right|<\max _{x \in \mathscr{I}}\left|e^{*}(x)\right| \]

Haar Condition

(1) If an element of \(\mathscr{P}_{n}\) has more than \(n\) zeros, then it is identically zero.

大概就是说,最高次数是 \(n\) 的多项式最多有 \(n\) 个零点——

或者有无穷多个零点,处处都是 \(0\).

(2) Let \(\left\{\zeta_{j} ; j=1,2, \ldots, k\right\}\) be any set of distinct points in the open interval \((a, b)\), where \(k \leqslant n\). There exists an element of \(\mathscr{P}_{n}\) that changes sign at these points, and that has no other zeros. Moreover, there is a function in \(\mathscr{P}_{n}\) that has no zeros in \([a, b]\). The following two properties of polynomials are required later:

给出了多项式的存在性,任意给定一些点,肯定有一个多项式在这些地方变号,只要变号的次数小于等于 \(n\).

(3) If a function in \(\mathscr{P}_{n}\), that is not identically zero, has \(j\) zeros, and if \(k\) of these zeros are interior points of \([a, b]\) at which the function does not change sign, then the number \((j+k)\) is not greater than \(n\).

\[p(x) = \prod (x - x_i)^{n_i} \]

不变号的零点肯定是多项式里某些要素是偶数次方,所以至少贡献两个 degree.

(4) Let \(\left\{\xi_{j} ; j=0,1, \ldots, n\right\}\) be any set of distinct points in \([a, b]\), and let \(\left\{\phi_{i} ; i=0,1, \ldots, n\right\}\) be any basis of \(\mathscr{P}_{n}\). Then the \((n+1) \times\) \((n+1)\) matrix whose elements have the values \(\left\{\phi_{i}\left(\xi_{j}\right)\right.\); \(i=0,1, \ldots, n ; j=0,1, \ldots, n\}\) is non-singular.

大概就是任意一些不一样的点换基换到多项式空间,都是不会丢失维数的. (?) 忘了x

Haar Condition 就是多项式空间满足的一些性质,在下面有关的证明里面实际上我们只用到多项式的一部分性质,有这些性质就够用了. 于是可以做一些拓展,把这些一部分的性质拿出来,毕竟我们只要用这么多东西,那其他满足这些东西的线性空间也是适用的.

An \((n+1)\)-dimensional linear subspace \(\mathscr{A}\) of \(\mathscr{C}[a, b]\) is said to satisfy the 'Haar condition' if these four statements remain true when \(\mathscr{P}_{n}\) is replaced by the set \(\mathscr{A}\). Equivalently, any basis of \(\mathscr{A}\) is called a 'Chebyshev set'.

It is proved that properties \((\mathbf{1}),(3)\) and (4) are equivalent, and that these properties imply condition (2).

这里相关的证明,一般就看 \((1)\) 就行了.

Theorem 7.2 (Characterization Theorem)

Let \(\mathscr{A}\) be an \((n+1)\)-dimensional linear subspace of \(\mathscr{C}[a, b]\) that satisfies the Haar condition, and let \(f\) be any function in \(\mathscr{C}[a, b]\). Then \(p^{*}\) is the best minimax approximation from \(\mathscr{A}\) to \(f\), if and only if there exist \((n+2)\) points \(\left\{\xi_{i}^{*} ; i=0,1, \ldots, n+1\right\}\), such that the conditions

\[\begin{aligned} & a \leqslant \xi_{0}^{*}<\xi_{1}^{*}<\ldots<\xi_{n+1}^{*} \leqslant b, \\ & \left|f\left(\xi_{i}^{*}\right)-p^{*}\left(\xi_{i}^{*}\right)\right|=\left\|f-p^{*}\right\|_{\infty}, \quad i=0,1, \ldots, n+1, \end{aligned} \]

and

\[f\left(\xi_{i+1}^{*}\right)-p^{*}\left(\xi_{i+1}^{*}\right)=-\left[f\left(\xi_{i}^{*}\right)-p^{*}\left(\xi_{i}^{*}\right)\right], \quad i=0,1, \ldots, n, \]

are obtained.

只要不存在 \(p\) 使得 \(\left[f(x)-p^{*}(x)\right] p(x)>0\) 那么就有最优.

嘛……大概说说自己的思路,不一定对. 姑且把 \(\mathscr{A}\) 当成 \(\mathscr P_n\) 来想,因为 \(p(x)\) 在他所在的空间 \(\mathscr P_n\) 里面,只要是有 \(n\) 个零点的东西都能找到一个 \(p(x)\) 使得他们零点构成一样——所以就要 \(\left[f(x)-p^{*}(x)\right]\) 有更多的零点,至少要 \(n+1\) 个. 想要 \(n+1\) 个零点,那这个连续函数至少要 \(n +2\) 个交替分布在横轴上下的一些点,也就是这里说的 \(\left\{\xi_{i}^{*} ; i=0,1, \ldots, n+1\right\}\).

标签:right,Theory,mathscr,ldots,Approximation,xi,ch7,any,left
From: https://www.cnblogs.com/kion/p/17340615.html

相关文章