首页 > 其他分享 >Approximation Theory and Method part 3

Approximation Theory and Method part 3

时间:2023-04-21 14:47:30浏览次数:37  
标签:right Theory mathscr divided Approximation part prod ldots left

Approximation Theory and Method part 3

Basic properties of divided differences

Let \(\left\{x_i ; i=0,1, \ldots, n\right\}\) be any \((n+1)\) distinct points of \([a, b]\), and let \(f\) be a function in \(\mathscr{C}[a, b]\). The coefficient of \(x^n\) in the polynomial \(p \in \mathscr{P}_n\) that satisfies the interpolation conditions

\[p\left(x_i\right)=f\left(x_i\right), \quad i=0,1, \ldots, n \]

is defined to be a divided difference of order \(n\), and we use the notation \(f\left[x_0, x_1, \ldots, x_n\right]\) for its value. We note that the order of a divided difference is one less than the number of arguments in the expression $f[., ., \ldots,.] . $ Hence $ f\left[x_0\right]$ is a divided difference of order zero, which, by definition, has the value \(f\left(x_0\right)\). Moreover, when \(n \geqslant 1\), it follows from equations (4.3) and (4.6) that the equation

\[f\left[x_0, x_1, \ldots, x_n\right]=\sum_{k=0}^n \frac{f\left(x_k\right)}{\prod_{\substack{i=0 \\ j \neq k}}^n\left(x_k-x_j\right)} \]

is satisfied. We see that the divided difference is linear in the function values \(\left\{f\left(x_i\right) ; i=0,1, \ldots, n\right\}\), but formula (5.2) is not the best way of calculating the value of \(f\left[x_0, x_1, \ldots, x_n\right]\). A better method is described in Section 5.3.

对于

\[l_k(x)=\prod_{\substack{j=0 \\ j \neq k}}^n\left(x-x_j\right) /\left(x_k-x_j\right), \quad a \leqslant x \leqslant b . \]

\(x^n\) 的系数是 \(\frac{1}{\prod_{\substack{i=0 \\ j \neq k}}^n\left(x_k-x_j\right)}\). 所以 \(f\left[x_0, x_1, \ldots, x_n\right]=\sum_{k=0}^n \frac{f\left(x_k\right)}{\prod_{\substack{i=0 \\ j \neq k}}^n\left(x_k-x_j\right)}\).

Theorem 5.1
Let \(f \in \mathscr{C}^{(n)}[a, b]\) and let \(\left\{x_i ; i=0,1, \ldots, n\right\}\) be a set of distinct points in \([a, b]\). Then there exists a point \(\xi\), in the smallest interval that contains the points \(\left\{x_i ; i=0,1, \ldots, n\right\}\), at which the equation

\[f\left[x_0, x_1, \ldots, x_n\right]=f^{(n)}(\xi) / n ! \]

is satisfied.

Recall that

Theorem 4.2
For any set of distinct interpolation points \(\left\{x_i ; i=0,1, \ldots, n\right\}\) in \([a, b]\) and for any \(f \in \mathscr{C}^{(n+1)}[a, b]\), let \(p\) be the element of \(\mathscr{P}_n\) that satisfies the equations (4.2). Then, for any \(x\) in \([a, b]\), the error (4.12) has the value

\[e(x)=\frac{1}{(n+1) !} \prod_{j=0}^n\left(x-x_j\right) f^{(n+1)}(\xi) \]

where \(\xi\) is a point of \([a, b]\) that depends on \(x\).

误差估计:

\[f(x)-p_n(x) \approx\left\{\prod_{j=0}^n\left(x-x_j\right)\right\} f\left[x_0, x_1, \ldots, x_{n+1}\right] \]

没空写了,有空再填坑罢()

标签:right,Theory,mathscr,divided,Approximation,part,prod,ldots,left
From: https://www.cnblogs.com/kion/p/17340291.html

相关文章

  • 如何在 .NET Core WebApi 中处理 MultipartFormDataContent 中的文件
    在上一篇文章(如何在.NETCoreWebApi中处理MultipartFormDataContent)中,我们有描述过如何以最简单的方式在.NETCoreWebApi中处理MultipartFormDataContent。基于框架层面的封装,我们可以快速的从Request.Form中分别拿到文件内容和文本内容,但是这些默认的解析方式都是建......
  • 装饰器functools wraps, update_wrapper, partial 以及 装饰器传参
    partial、update_wrapper、wraps的使用引用fromfunctoolsimportwraps,update_wrapper,partial1.partialpartial又叫偏函数。函数在执行的时候需要带上必要的参数,有些参数是执行之前就是可知的,这种情况下,一个函数有一个或者多个函数预先就能用上,以便函数能够更少的参数......
  • 如何在 .NET Core WebApi 中处理 MultipartFormDataContent
    最近在对某个后端服务做.NETCore升级时,里面使用了多处处理MultipartFormDataContent相关内容的代码。这些地方从.NETFramework迁移到.NETCore之后的代码改动较大,由于本身没有测试覆盖,导致在部署QA环境后引发了一些问题。这里做一个技术复盘。什么是MultipartForm......
  • Java Magic. Part 4: sun.misc.Unsafe(译)
    JavaMagic.Part4:sun.misc.UnsafeJavaisasafeprogramminglanguageandpreventsprogrammerfromdoingalotofstupidmistakes,mostofwhichbasedonmemorymanagement.But,thereisawaytodosuchmistakesintentionally,usingUnsafeclass.Java是一种......
  • partprobe
      partprobe工具操作系统目录/usr/sbin/partprobe程序安装包parted-3.1-17.el7.x86_64.rpm命令用法:partprobe是用来告知操作系统内核分区表发生变化的工具,告知方式是请求内核重读分区表选项如下:-d不会让内核重读分区表,分区表发生变化后使用该命令partproe-d/dev/sdi不会......
  • C++ Part1
    C++是在C语言的基础上发展而来的,解决了C语言中存在的一些明显的问题。本文针对C语言存在的问题,引出C++中的解决方案,以对C++的语法进行说明和分析。命名空间域的概念可以将C++中的域理解为作用域。C++标准规定:使得特定名字保持有效的那些可能并不连续的程序文本就是该名字的作用域。......
  • 让 Spartacus 服务器端渲染引入 long API 调用超时机制的两种配置方法
    两种方法,使用config.backend.timeout={浏览器:...,服务器:...},或者可以更具体地配置,即基于Request粒度,通过将HTTP_TIMEOUT_CONFIGHttpContextToken传递给AngularHttpClient的方法来针对每个具体请求进行配置。在SSR(Node.js)中,超时处理耗时过长的外部http调用是一项尤为......
  • SaaS企业做NPS调研很简单!Partner Share推荐意愿调查就可实现
    对于 SaaS企业来说,了解客户需求和满意度调查是改善SaaS产品和业务攻坚克难的关键。想做到这一点,就需要调研收集一线使用客户的正确需求。 NPS调研我根据业内合作伙伴的交流发现:大部分SaaS企业产品经理都会借助相关工具半自助完成调研,并取得改进建议,不断对产品进行优化升级。业内......
  • partprobe不重启的情况下重读分区
    partprobe命令用于重读分区表,当出现删除文件后,出现仍然占用空间。可以partprobe在不重启的情况下重读分区。语法partprobe(选项)(参数)选项-d:不更新内核;-s:显示摘要和分区;-h:显示帮助信息;-v:显示版本信息。参数设备:指定需要确认分区表改变的硬盘对应的设备文件。实例使用partprobe......
  • Party at Hali-Bula UVA - 1220
     多判断一个唯一性 only[x][0/1]#include<iostream>#include<cstring>#include<vector>#include<map>#include<algorithm>usingnamespacestd;constintN=205;intf[N][2],n,K;intonly[N][3];vector<int>g[N];map&l......