首页 > 其他分享 >数论入门

数论入门

时间:2023-03-15 18:46:01浏览次数:47  
标签:prime 入门 数论 dfrac varphi times int 素数

一、素数筛和唯一分解

1.素数判断

我们可以从 $2$ 到 $p-1$ 一个一个试除,如果有能整除就不是素数,特判 $1,2$ 就行了。

但这样太慢了,我们知道 $\forall n \in Z,n=k_1k_2...k_t;k_1,k_2...k_t\in Z$,及对于任意合数,定有 $k_i \le \sqrt{n}$,所以我们只需要判断 $\sqrt{n}$ 以内的数即可,就可以把时间优化到 $O(\sqrt{n})$。

code

bool prime(int x){
	if(x == 1) return 0;
	if(x == 2) return 1;
	for(long long i = 2;i * i <= x;i ++)if(x % i == 0)return 0;
    return 1;
}

2.素数筛选

那么我们如何筛选出 $n$ 以内的素数表呢?

(1)暴力筛选

把 $1$ 到 $n$ 遍历一遍,每个数都判一下素数,是的就存起来。

它的复杂度显然 $O(n\sqrt n)$。

(2)埃氏筛

在暴力筛选的基础上做些优化,每次筛出一个素数,就把它后面它的倍数打一个标记,之后就不需要判断它了。

memset(is_prime,1,sizeof(is_prime));
is_prime[1]=0;//此数组记录是否为素数
for(int i=2;i<=n;i++)
    if(is_prime[i]){
        prime[++tot]=i;//此数组记录素数表
        for(int j=i+i;j<=n;j+=i)is_prime[j]=0;
    }

(3)欧拉筛

在埃氏筛的基础上进行优化。

埃氏筛的缺点是,同样的一个合数 $x$ 若 $x = p_1p_2k$,其中 $p_1p_2$ 是素数,那么 $x$ 就会在 $p1$ 和 $p2$ 时被标记两次,这样就增加了时间复杂度。

欧拉筛的基本思想就是每次只让构成一个数的最小素数筛掉它。

//	memset(isp,1,sizeof isp);
	isp[1] = 1;
	for(int i = 2;i <= n;i ++){
		if(!isp[i])prime[++tot]=i;
		for(int j = 1;j <= tot && i*prime[j] <= n;j ++){
			isp[i*prime[j]]=1;
			if(!i%prime[j])break;
		}
	}

其中 if(!i%prime[j])break; 是关键。

对于需要标记的数 $i \times prime[j]$,如果 $prime[j] | i$,那么下面 $i \times prime[j+n]$ 一定可以写成 $\dfrac{i}{prime[j]}\times prime[j] \times prime[j+n]$,因为素数表单调递增,显然其中最小的素因子不是 $prime[j+n]$,而是 $prime[j]$ !所以在此时应该 break 掉!

2.唯一分解定理与素因子分解

唯一分解定理

非常简单,即任意自然数可以分成几个素数的成绩,且这个分解唯一确定

唯一分解的性质

  1. 一个数的所有正因子个数为其素因子指数加一相乘。

  2. 两个数的最大公因数为其相同素因子指数取最小值后的乘积。

  3. 两个数的最小公倍数为其相同素因子指数取最大值后的乘积。

(懒得打公式了

分解质因数

引理:$n$ 最多有 $1$ 个素因子 $> \sqrt n$。

(1)枚举法

枚举每个数,试除即可。

tot=0;
for(int i=2;i*i<=n;i++)
  	if(n%i==0){
    	p[++tot]=i;a[tot]=0;
    	while(n%i==0)n=n/i,a[tot]++;
  	}
if(n>1)p[++tot]=n,a[tot]=1;

(2)筛选法

先筛出素数表,只试除素数,时间略有优化。

void init(int n){
	memset(is_p,1,sizeof(is_p));
	is_p[1]=0;
	for(int i=2;i*i<=n;i++){
		if(is_p[i]==1){
		    prime[++m]=i;
		    for(int j=i+i;j<=n;j+=i) is_p[j]=0;
	  	}
	}
}
void divid(int n){
	int tem=n;
	for(int i=1;i<=m;i++){
		if(prime[i]*prime[i]>tem)break;
		if(n%prime[i]==0){
			p[++tot]=prime[i];a[tot]=0;
			while(n%prime[i]==0)a[tot]++,n/=prime[i];
   		}
	} 
	if(n>1)p[++tot]=n,a[tot]++;
}

(3)记录最小素因子

维护 $n$ 以内所有数的最小素因子

void init(int n){
	memset(is_p,0,sizeof(is_p));
	for(int i=2;i<=n;i++){
		if(prime[i]==0){
			prime[i]=i;
			for(int j=i+i;j<=n;j+=i) if(!prime[j])prime[j]=i;
		}
	}
} 
void divid(int n){
	while(n!=1){
		p[++tot]=prime[n];a[tot]=0;
		while(n%p[tot]==0)a[tot]++,n/=p[tot];
	}
}

二、扩展欧几里得

1.用途:

求解逆元、好像还可以解二元一次不定方程。

说句闲话:数学课老师让解二元一次方程组,讲题直接扩欧:“这显然是跑两遍EXGCD,求出最小解加膜数取个交集即可。”

于是我写了满满一黑板递归。。。

2.板子

推导

我们已知 $a,b$ 要求 $x,y$, 使 $ax + by = \gcd(a,b)$

那么,我们可以得到:$bx'+(a \bmod b)y' = \gcd(b,a \bmod b)$

所以:$bx' + (a-b\lfloor\dfrac{a}{b}\rfloor)y' = \gcd(b,a \bmod b)$

$ay' + b(x' + \lfloor\dfrac{a}{b}\rfloor y') = \gcd(b,a \bmod b)=ax + by$

为了使等式成立我们得到:$x=x'$,$y = (x' + \lfloor\dfrac{a}{b}\rfloor y')$ 以此递归下去,最后当 $b = 0$ 时,$x = 1,y = 0$ 再归回去就行。

所以代码实现是这样的:

inline int exgcd(int a,int b){
	if(b == 0){x = 1;y = 0;return a;}
	int g = exgcd(b,a%b);
	int t = x;
	x = y;
	y = t - a/b*y;
	return g;
}

3.应用

通常我们用拓展欧几里得求解最小正整数解问题。

设 $g = gcd(a,b)$,求,满足 $ax+by=g$ 的最小的正整数 $x$;

当我们用扩展欧几里得求出满足 $ax+by=g$ 的 $x,y$ 时,我们对其再做一下变形:

即:$a(x+k\dfrac{b}{g})+b(y-k\dfrac{a}{g})= g$

所以对于 $x$,加 $k$ 个 $\dfrac{b}{g}$ 都不影响等式成立。所以我们不妨把它看做一个周期 $T = \dfrac{b}{g}$。

那么我们可以得到,倘若扩展欧几里得跑完之后,$x$ 是一个负数,我们可以对其加一些 $T$ 让它变成正数,再找最小值即可。

对于求最小值,我们有 $x_{min}=((x \mod T)+T) \mod T$。

解释一下:第一个取膜,让 $|x|$ 小于 $T$。加上 $T$ 使其变成正的(前提是 $x$ 一开始是负的,是正的的话无所谓)。最后膜 $T$ 保证其最小,万无一失。(毕竟有可能加上 $T$ 以后 $x$ 比 $T$ 大,这样显然不是最小解)

code:

	int g = exgcd(a,b);
	int T = b/g;
	x = (x%T+T)%T;

应用 $\times 2$

我们终于可以尝试用扩展欧几里得解二元一次不定方程了!!

给定一个方程:$ax+by=c$,我们要求 $x$ 的最小正整数解。

首先EXGCD,得到了 $ax+by=\gcd(a,b)$ 的解,令 $g = \gcd(a,b)$。

等式两边同除:$a\dfrac{x}{g}+b\dfrac{y}{g}=1$

两边同乘:$a\dfrac{cx}{g}+b\dfrac{cy}{g}=c$

这时候我们发现,当 $g \nmid c$ 时是无解的。

这样我们就解决了这类问题。

(注:当系数有负数出没,注意取反)

应用 $\times 3$

现在可以求逆元了。

逆元定义:

使 $ax \equiv 1 \pmod p$ 成了的 $x$,写作 $a^{-1}$。

求法:

如果 $p\perp a$ ,那么直接求 $\dfrac{1}{a}\pmod p$ ,费马小定理就行了。

我们还可以EXGCD,就需要求出 $ax+by=1$ 的解即可。

code

#include<bits/stdc++.h>
using namespace std;
int n,p,x,y;
inline int exgcd(int a,int b){
	if(b == 0){x = 1;y = 0;return a;}
	int g = exgcd(b,a%b);
	int t = x;
	x = y;
	y = t - a/b*y;
	return g;
}
inline int ask(int a,int b){
	x = y = 0;
	int g = exgcd(a,b);
	int T = b/g;
	x = (x%T+T)%T;
	return x;
}
int main(){
	cin.tie(0);
	cout.tie(0);
	cin >> n >> p;
	for(int i = 1;i <= n;i ++){
		cout<<ask(i,p)<<endl;
	}
	return 0;
} 
 

这个写法在 P3811 【模板】乘法逆元里面只能拿64分。

二、费马小定理

1.基本定理

$$a^{p-1}\equiv1\pmod p$$

其中 $p$ 为素数且 $p \perp a$。

费马小定理求逆元

对上式做基本数论变换,即可得到:

$$a^{p-2} \equiv a^{-1}\pmod p$$

那么 $a$ 在膜 $p$ 意义下的逆元就恒等于 $a^{p-2}$,这样快速幂即可实现,比扩展欧几里得快,时间是 $O(\log n)$的,但不能处理普通膜数。

三、逆元的其他求法

如果我们想求出 $n$ 以内所有数的逆元,如果使用费马小定理挨个求解,时间就是 $O(n \log n)$ 的,下面我们考虑如何优化到线性。

1.线性求逆元

求 $i$ 在膜 $p$ 意义下的逆元

设 $i \equiv r \pmod p$

则 $p = ki+r$

$ki+r \equiv 0 \pmod p$

$ki \times i{-1}r + r \times i{-1}r \equiv 0 \pmod p$

$kr{-1}+i \equiv 0\pmod p$

$i^{-1} \equiv -kr^{-1} \pmod p$

$i^{-1} = -\lfloor{\dfrac{p}{i}}\rfloor(p\bmod i)^{-1}\pmod p$

$i^{-1} = (p - \lfloor{\dfrac{p}{i}}\rfloor)(p\bmod i)^{-1}$

这样就形成了一个递推关系式,如下代码就可以实现线性求连续自然数逆元:

for(int i=2;i<=n;i++)
	inv[i]=(p-p/i)*inv[p%i]%p;

2.阶乘求逆元

$f[n]=\dfrac{1}{n!}$

$f[n-1]=\dfrac{1}{(n-1)!}=\dfrac{1}{n!}\times n=f[n]\times n$

$i^{-1}=\dfrac{1}{i!}\times (i-1)!$

$inv[i]=f[i]\times fact[i];(fact[i]=i!)$

其中就可以在求阶乘时取膜,时间依然是线性的。

fact[1]=1%p;
for(int i=2;i<=n;i++)fact[i]=(fact[i-1]*i)%p;
	f[n]=fast(fact[n],p-2);
	for(int i=n-1;i>=1;i--)
		f[i]=(f[i+1]*(i+1))%p;
	inv[1]=1;
	for(int i=2;i<=n;i++)
		inv[i]=(f[i]*fact[i-1])%p;

数论倒数基本应用

求 $\dfrac{a}{b}\bmod p$。

Lucas 定理

快速求解组合数 $\dbinom{n}{m}$

$Lucas(n,m)=C(n%p,m%p)*Lucas(n/p,m/p)%p$

四、欧拉函数 $\varphi(x)$

1.含义:

$\varphi(x)$ 的含义是 $x$ 的缩系的阶,即 $m$ 以内与之互素的元素个数。

$$\varphi(x)=\sum\limits_{i=1}^{n}[\gcd(i,n)=1]$$

2.性质:

(1)$x$ 为素数

若 $p$ 为素数,有 $\varphi(p) = p-1$。

(2)求 $\varphi (x^k)$

若 $p$ 为素数,$\varphi(p^k) = p^k - p{k-1}=p(p-1)=p^{k-1}\varphi(p)$。

(3)积性

设 $m=m_1m_2$ 有若 $m_1 \perp m_2$,那么 $\varphi(m) = \varphi(m_1)\varphi(m_2)$。

(3)欧拉定理

$$a^{\varphi(m)}\equiv 1 \pmod m$$

特别的,当 $m$ 为素数是,该式与费马小定理相同。

(4)求欧拉函数

第一种是分解质因数直接求

若 $n=p_1{k_1}p_2\cdots p_m^{k_m}$

那么 $\varphi(n)=n\prod\limits_{i=1}{m}(1-p_i)$

其本质就是容斥原理。

int phi(int n){
	LL ans=n;
	for(int i=2;i*i<=n;i++){
		if(n%i==0){
			ans=ans/i*(i-1);
			while(n%i==0)n=n/i;
		}
	} 
	if(n>1) ans=ans/n*(n-1);
	return ans;
}

第二种是递推求法,用欧拉筛线性求解

求解过程中,如果已经知道 $\varphi(x)$ 的值,求 $\varphi(px)$,我们需要分两种情况讨论。

  1. 若 $p|x$,$\varphi(px)=\varphi(x)\times p$

  2. 若 $p\nmid x$,$\varphi(px)=\varphi(x)\times \varphi(p)$

vis[1]=1;
phi[1]=1;
for(int i=2;i<=n;i++){
       if(!vis[i])prime[++cnt]=i,phi[i]=i-1;
       for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
           vis[i*prime[j]]=1;
           if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}
           else phi[i*prime[j]]=phi[i]*phi[prime[j]];
       }
}

3.扩展欧拉定理

$$a^b\bmod m=\begin{cases}a^{b\bmod\varphi(m)+\varphi(m)}\bmod m & b \ge\varphi(m)\a^{b\bmod\varphi(m)}\bmod m & a\perp m\a^b\bmod m & b < \varphi(m)\end{cases}$$

五、狄利克雷卷积与莫比乌斯反演

算是比较难的数论内容了。

1.狄利克雷卷积

数论函数的一种运算法则,记 $h = f * g$ 为:

$$h(n)=\sum\limits_{d|n}f(d)g(\dfrac{n}{d})$$

这个运算符合基本的运算律。

2.莫比乌斯反演

对于数论函数 $F(x)$ 和 $f(x)$,有 $F = f*1$,那么如果我们已经知道了 $F(x)$,该如何求解 $f(x)$ 呢?

列一下:

$F(1)=f(1)$

$F(2)=f(2)+f(1)$

$F(3)=f(3)+f(1)$

$F(4)=f(4)+f(2)+f(1)$

$\cdots\cdots$

这样我们似乎有了一个 $n$ 元方程组,我们考虑消元求解就行。

我们发现:

$f(1)=F(1)$

$f(2)=F(2)-F(1)$

$f(3)=F(3)-F(1)$

$f(4)=F(4)-F(2)+F(1)$

根据上述我们不难发现规律,$f(n)$ 的值就等于 $F(\dfrac{n}{d})$ 相加减!

继续探寻规律,就得到 $f = \mu * F$。

其中 $\mu$ 就是莫比乌斯函数。

莫比乌斯函数

$$\mu(x)=\begin{cases}1 & x = 1\(-1)^k & x=p_1p_2\cdots p_k\0& x\texttt{\tiny{有平方因子}}\end{cases}$$

莫比乌斯函数的本质是一个容斥系数,其实在刚才的例子里也不难看出。

对于莫比乌斯函数的求解,按照其积性线性筛即可

莫比乌斯求值模板

inline void mobius(){
	int n = 1e6;
	mob[1] = 1;
	for(int i = 2;i <= n;i ++){
		if(!vis[i])prm[++tot] = i,mob[i] = -1;
		for(int j = 1;j <= tot && prm[j]*i <= n;j ++){
			vis[i*prm[j]] = 1;
			if(i % prm[j]==0){
				mob[i * prm[j]] = 0;
				break;
			}
			mob[i * prm[j]] = -mob[i];
		}
	}
}

结论:

$\mu * 1 = $

标签:prime,入门,数论,dfrac,varphi,times,int,素数
From: https://www.cnblogs.com/yanxinyi-cpp/p/17219595.html

相关文章

  • ANTLR 宝藏入门之路 hello World初认识
    ANTLR宝藏入门之路 helloWorld初认识解释一下:1,在g4文件中定义业务逻辑规则2,g4自动生成词法分析、语法分析等一堆代码3,编写java代码,调用g4自动生成的class类4,输入要......
  • go开发入门篇之go语言
    ​​ Go语言提供了数组类型的数据结构。数组是一组已编号的、长度固定的数据项序列,具有相同的唯一类型,可以是任意的原始类型,例如整型、字符串或自定义类型。相对于......
  • vue入门篇之Vue.js 组件
    Vue.js组件是该框架最强大的功能之一,能够扩展HTML元素并封装可重用的代码。通过组件系统,我们可以使用独立可复用的小组件来构建大型应用,几乎任何类型的应用的界面都可以......
  • 大爽Python入门教程 7-8 实践演示* 控制台版本——简易回合战斗
    大爽Python入门公开课教案点击查看教程总目录1背景介绍不知道大家有没有玩过魔塔。在我小时候,这是一个很经典又好玩的小游戏。其实最早想做一个控制台版本的简易魔......
  • 大爽Python入门教程 7-7 异常处理 try ... except Exception
    大爽Python入门公开课教案点击查看教程总目录1什么是异常Exception简单来讲,错误Error就是异常Exception。具体的,我们先来看几个错误。>>>2:3SyntaxError:illega......
  • 跟老杜从零入门MyBatis到架构思维(六)MyBatis核心配置文件-transactionManager
    MyBatis核心配置文件详解transactionManager配合视频教程观看,更易学习理解,课程讲解从Mybatis的一些核心要点与实战中的运用,一直过渡到MyBaits源码,由表及里的代入架构思维。......
  • SQL语法快速入门
    本文参考CMU数据库神课15-445中的SQL语法讲解部分SQL数据定义createtabledepartment( dept_namevarchar(20), buildingvarchar(20), budgetnumeric(12,2),......
  • python入门学习-3.多线程、多进程、网络通信
    进程和线程多任务线程是最小的执行单元,而进程由至少一个线程组成。多进程Linux操作系统提供了一个fork()系统调用,子进程返回0,父进程返回子进程的ID。调用getpid()可以......
  • 爬虫入门--xpatch
    XPath是一门在XML文档中查找信息的语言。XPath使用路径表达式在XML文档中进行导航。XPath包含一个标准函数库。XPath是XSLT中的主要元素。XPath是一个W3C......
  • c++11多线程入门<学习记录>
    最近学习了c++多线程相关知识,也算是对这方面内容的入门视频链接c++11并发与多线程视频课程看了大概两周,简单进行总结参考文章C++11并发与多线程PS:c++11提供了标准的可......