[HAOI2011]Problem b
描述
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2
2 5 1 5 1
1 5 1 5 2
Sample Output
14
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
分析:莫比乌斯反演经典题+容斥原理,具体证明
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int MAXN = 100000;
bool check[MAXN + 10];
int prime[MAXN + 10];
int mu[MAXN + 10];
void Moblus()
{
memset(check, false, sizeof(check));
mu[1] = 1;
int tot = 0;
for (int i = 2; i <= MAXN; i++)
{
if (!check[i])
{
prime[tot++] = i;
mu[i] = -1;
}
for (int j = 0; j < tot; j++)
{
if (i * prime[j] > MAXN)
{
break;
}
check[i * prime[j]] = true;
if (i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
return ;
}
int sum[MAXN + 10];
// 找[1, n], [1, m]内互质的数的对数
long long solve(int n, int m)
{
long long ans = 0;
if (n > m)
{
swap(n, m);
}
for (int i = 1, la = 0; i <= n; i = la + 1)
{
la = min(n / (n / i), m / (m / i));
ans += (long long)(sum[la] - sum[i - 1]) * (n / i) * (m / i);
}
return ans;
}
int main()
{
Moblus();
sum[0] = 0;
for (int i = 1; i <= MAXN; i++)
{
sum[i] = sum[i - 1] + mu[i];
}
int a, b, c, d, k;
int T;
scanf("%d", &T);
while (T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
long long ans = solve(b / k, d / k) - solve((a - 1) / k, d / k) - solve(b / k, (c - 1) / k) + solve((a - 1) / k, (c - 1) / k);
printf("%lld\n", ans);
}
return 0;
}
标签:prime,2301,sum,容斥,long,mu,反演,int,MAXN From: https://blog.51cto.com/u_14932227/6041865