首页 > 其他分享 >HDU 6441 Find Integer (费马大定理)

HDU 6441 Find Integer (费马大定理)

时间:2023-02-03 10:06:42浏览次数:49  
标签:HDU int ll 费马大 6441 mod include scanf define

Description:

people in USSS love math very much, and there is a famous math problem
give you two integers n,a,you are required to find 2 2 2 integers b , c b,c b,c such that a n + b n = c n a_{n}+b_{n}=c_{n} an​+bn​=cn​.

Input

one line contains one integer T ; ( 1 ≤ T ≤ 1000000 ) T;(1≤T≤1000000) T;(1≤T≤1000000)

next T lines contains two integers n , a ; ( 0 ≤ n ≤ 1000 , 000 , 000 , 3 ≤ a ≤ 40000 ) n,a;(0≤n≤1000,000,000,3≤a≤40000) n,a;(0≤n≤1000,000,000,3≤a≤40000)

Output

print two integers b , c b,c b,c if b , c b,c b,c exits;(¥1≤b,c≤1000,000,000¥);

else print two integers − 1 − 1 -1 -1 −1−1 instead.

Sample Input

1
2 3

Sample Output

4 5

题意:

每次两个整数 N 、 a N、a N、a,输出符合公式 a n + b n = c n a^n+b^n=c^n an+bn=cn 的一对 b b b 和 c c c
这道题是我们暑假为了打区域赛网络赛训练的第一套题上面的,这个应该是签到题,当时还是yzq告诉我当 n > 2 n>2 n>2 的时候无解,直接费马大定理。时间真快都一年。

  • 当 n = 1 n = 1 n=1,即 a + b = c a + b = c a+b=c,已知 a a a ,令 b = 1 b = 1 b=1, c = a + 1 c = a + 1 c=a+1 即可
  • 当 n = 2 n = 2 n=2,对于 x 2 + y 2 = z 2 x^2+y^2=z^2 x2+y2=z2 ,如果已知 x x x 那么就有 z 2 − y 2 = x 2 z^2−y^2=x^2 z2−y2=x2
  • 因为 z > y z > y z>y,所以设 z = y + i z = y + i z=y+i,那么就有: x 2 − i 2 = 2 ∗ i ∗ y x^2−i^2=2∗i∗y x2−i2=2∗i∗y
  • 只要枚举 i i i ,判断( x 2 − i 2 x^2 - i^2 x2−i2) % 2 ∗ i \% 2*i %2∗i是否可以整除即可。

AC代码:

#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
using namespace std;
#define sd(n) scanf("%d", &n)
#define sdd(n, m) scanf("%d%d", &n, &m)
#define sddd(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define pd(n) printf("%d\n", n)
#define pc(n) printf("%c", n)
#define pdd(n, m) printf("%d %d", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n, m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld", &n)
#define sldd(n, m) scanf("%lld%lld", &n, &m)
#define slddd(n, m, k) scanf("%lld%lld%lld", &n, &m, &k)
#define sf(n) scanf("%lf", &n)
#define sc(n) scanf("%c", &n)
#define sff(n, m) scanf("%lf%lf", &n, &m)
#define sfff(n, m, k) scanf("%lf%lf%lf", &n, &m, &k)
#define ss(str) scanf("%s", str)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
#define mem(a, n) memset(a, n, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define mod(x) ((x) % MOD)
#define gcd(a, b) __gcd(a, b)
#define lowbit(x) (x & -x)
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int MOD = 1e9 + 7;
const double eps = 1e-9;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
inline int read()
{
    int ret = 0, sgn = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        if (ch == '-')
            sgn = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        ret = ret * 10 + ch - '0';
        ch = getchar();
    }
    return ret * sgn;
}
inline void Out(int a) //Êä³öÍâ¹Ò
{
    if (a > 9)
        Out(a / 10);
    putchar(a % 10 + '0');
}

ll gcd(ll a, ll b)
{
    return b == 0 ? a : gcd(b, a % b);
}

ll lcm(ll a, ll b)
{
    return a * b / gcd(a, b);
}
///快速幂m^k%mod
ll qpow(ll a, ll b, ll mod)
{
    if (a >= mod)
        a = a % mod + mod;
    ll ans = 1;
    while (b)
    {
        if (b & 1)
        {
            ans = ans * a;
            if (ans >= mod)
                ans = ans % mod + mod;
        }
        a *= a;
        if (a >= mod)
            a = a % mod + mod;
        b >>= 1;
    }
    return ans;
}

// 快速幂求逆元
int Fermat(int a, int p) //费马求a关于b的逆元
{
    return qpow(a, p - 2, p);
}

///扩展欧几里得
int exgcd(int a, int b, int &x, int &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    int g = exgcd(b, a % b, x, y);
    int t = x;
    x = y;
    y = t - a / b * y;
    return g;
}

///使用ecgcd求a的逆元x
int mod_reverse(int a, int p)
{
    int d, x, y;
    d = exgcd(a, p, x, y);
    if (d == 1)
        return (x % p + p) % p;
    else
        return -1;
}

///中国剩余定理模板0
ll china(int a[], int b[], int n) //a[]为除数,b[]为余数
{
    int M = 1, y, x = 0;
    for (int i = 0; i < n; ++i) //算出它们累乘的结果
        M *= a[i];
    for (int i = 0; i < n; ++i)
    {
        int w = M / a[i];
        int tx = 0;
        int t = exgcd(w, a[i], tx, y); //计算逆元
        x = (x + w * (b[i] / t) * x) % M;
    }
    return (x + M) % M;
}

#include <cstdio>
typedef long long ll;
int main()
{
    int t;
    sd(t);
    while (t--)
    {
        ll n, a, b, c;
        sldd(n, a);
        if (n == 1)
        {
            pldd(1, 1 + a);
        }
        else if (n == 2)
        {
            if (a % 2 == 1)
            {
                ll res = (a - 1) / 2;
                b = 2 * res * res + 2 * res;
                c = b + 1;
                pldd(b, c);
            }
            else
            {
                ll res = a / 2 - 1;
                b = res * res + 2 * res;
                c = b + 2;
                pldd(b, c);
            }
        }
        else
            printf("-1 -1 \n");
    }
    return 0;
}

标签:HDU,int,ll,费马大,6441,mod,include,scanf,define
From: https://blog.51cto.com/u_15952369/6034921

相关文章

  • HDU 5223 GCD
    Description:Inmathematics,thegreatestcommondivisor(gcd......
  • HDU1098 Ignatius's puzzle (数学归纳法)
    Description:Ignatiusispooratmath,hefallsacrossapuzzleproblem,sohehasnochoicebuttoappealtoEddy.thisproblemdescribesthat:......
  • HDU6198 number number number(打表 矩阵快速幂)
    题意就是找到用K个斐波那契数组不成的最小的数字是谁。先打表找规律1421233348852326609可以发现递推规律:F[n]=4*(F[n-1]-F[n-2])+F[n-3]如果直接递推打......
  • HDU-1233-还是畅通工程
    ​​题目链接​​还是畅通工程TimeLimit:4000/2000MS(Java/Others)MemoryLimit:65536/32768K(Java/Others)TotalSubmission(s):29989AcceptedSubmission(s):......
  • HDU-1159-Common Subsequence
    ​​题目链接​​​题目大意:给出两个字符串,求两个字符串的最长公共字串。思路:慢慢重心开始有贪心转向动态规划了,这题就是简单的动态规划题。以题目的第一组测试数据为例......
  • HDU-4552-怪盗基德的挑战书
    怪盗基德的挑战书TimeLimit:3000/1000ms(Java/Other)MemoryLimit:65535/32768K(Java/Other)TotalSubmission(s):26AcceptedSubmission(s):10Font:Time......
  • hdu-4883- (Best Coder) TIANKENG’s restaurant
    TIANKENG’srestaurantTimeLimit:2000/1000MS(Java/Others)    MemoryLimit:131072/65536K(Java/Others)TotalSubmission(s):1622    AcceptedSubmi......
  • HDU-1686-Oulipo
    OulipoTimeLimit:3000/1000ms(Java/Other)   MemoryLimit:32768/32768K(Java/Other)TotalSubmission(s):98   AcceptedSubmission(s):63Problem......
  • HDU-1272-小希迷宫
    ​​题目链接​​​小希的迷宫TimeLimit:2000/1000MS(Java/Others)MemoryLimit:65536/32768K(Java/Others)TotalSubmission(s):34355AcceptedSubmission(s......
  • HDU-1232-畅通工程(未完待续)
    畅通工程TimeLimit:4000/2000MS(Java/Others)MemoryLimit:65536/32768K(Java/Others)TotalSubmission(s):34508AcceptedSubmission(s):18267ProblemDescri......