- 已知 \(\sum (a_i + b_i) = 100\),求 \(\sum a_ib_i(100-a_i - b_i)\) 最大值。
解:
\(\sum a_ib_i(100-a_i - b_i)\)
\(\le \dfrac{1}{4} \sum (a_i+b_i)^2(100-a_i-b_i)\)
\(= \dfrac{1}{4} \sum (a_i+b_i)[(a_i+b_i)(100-a_i-b_i)]\)
\(\le \dfrac{1}{16} \sum (a_i+b_i)(a_i+b_i+100-a_i-b_i)^2\)
\(= 625 \sum (a_i+b_i)\)
\(= 62500\)
取等条件:\(a_i = b_i\),\(a_i + b_i = 50\)。(\(a_i = b_i = 25\))
标签:le,dfrac,sum,笔记本,数学,100,ib From: https://www.cnblogs.com/BreakPlus/p/17057171.html