首页 > 其他分享 >09-MobileNet 图像分类

09-MobileNet 图像分类

时间:2023-01-13 08:56:24浏览次数:45  
标签:loss MobileNet 09 train 图像 test 100 total Accuracy

 

 

 

MobileNet的pytorch代码实现:

  1 import torch.nn as nn
  2 from collections import OrderedDict
  3 import torch
  4 # from torchsummary import summary
  5 
  6 #定义基本的Conv_Bn_activate
  7 class baseConv(nn.Module):
  8     def __init__(self,inchannel,outchannel,kernel_size,stride,groups=1,active=False,bias=False):
  9         super(baseConv, self).__init__()
 10  
 11         #定义使用的激活函数
 12         if active=='HS':
 13             ac=nn.Hardswish
 14         elif active=='RE':
 15             ac=nn.ReLU6
 16         else:
 17             ac=nn.Identity
 18  
 19         pad=kernel_size//2
 20         self.base=nn.Sequential(
 21             nn.Conv2d(in_channels=inchannel,out_channels=outchannel,kernel_size=kernel_size,stride=stride,padding=pad,groups=groups,bias=bias),
 22             nn.BatchNorm2d(outchannel),
 23             ac()
 24         )
 25     def forward(self,x):
 26         x=self.base(x)
 27         return x
 28  
 29 #定义SE模块
 30 class SEModule(nn.Module):
 31     def __init__(self,inchannels):
 32         super(SEModule, self).__init__()
 33         hidden_channel=int(inchannels/4)
 34         self.pool=nn.AdaptiveAvgPool2d((1,1))
 35         self.linear1=nn.Sequential(
 36             nn.Conv2d(inchannels,hidden_channel,1),
 37             nn.ReLU6()
 38         )
 39         self.linear2=nn.Sequential(
 40             nn.Conv2d(hidden_channel,inchannels,1),
 41             nn.Hardswish()
 42         )
 43  
 44     def forward(self,x):
 45         out=self.pool(x)
 46         out=self.linear1(out)
 47         out=self.linear2(out)
 48         return out*x
 49  
 50 #定义bneck模块
 51 class bneckModule(nn.Module):
 52     def __init__(self,inchannels,expand_channels,outchannels,kernel_size,stride,SE,activate):
 53         super(bneckModule, self).__init__()
 54         self.module=[]     #存放module
 55  
 56         if inchannels!=expand_channels:         #只有不相等时候才有第一层的升维操作
 57             self.module.append(baseConv(inchannels,expand_channels,kernel_size=1,stride=1,active=activate))
 58  
 59         self.module.append(baseConv(expand_channels,expand_channels,kernel_size=kernel_size,stride=stride,active=activate,groups=expand_channels))
 60  
 61         #判断是否有se模块
 62         if SE==True:
 63             self.module.append(SEModule(expand_channels))
 64  
 65         self.module.append(baseConv(expand_channels,outchannels,1,1))
 66         self.module=nn.Sequential(*self.module)
 67  
 68         #判断是否有残差结构
 69         self.residual=False
 70         if inchannels==outchannels and stride==1:
 71             self.residual=True
 72  
 73     def forward(self,x):
 74         out1=self.module(x)
 75         if self.residual:
 76             return out1+x
 77         else:
 78             return out1
 79  
 80  
 81 #定义v3结构
 82 class mobilenet_v3(nn.Module):
 83     
 84     def __init__(self,num_classes=10,init_weight=True):
 85         super(mobilenet_v3, self).__init__()
 86  
 87         # [inchannel,expand_channels,outchannels,kernel_size,stride,SE,activate]
 88         net_config = [[16, 16, 16, 3, 1, False, 'HS'],
 89                       [16, 64, 24, 3, 2, False, 'RE'],
 90                       [24, 72, 24, 3, 1, False, 'RE'],
 91                       [24, 72, 40, 5, 2, True, 'RE'],
 92                       [40, 120, 40, 5, 1, True, 'RE'],
 93                       [40, 120, 40, 5, 1, True, 'RE'],
 94                       [40, 240, 80, 3, 2, False, 'HS'],
 95                       [80, 200, 80, 3, 1, False, 'HS'],
 96                       [80, 184, 80, 3, 1, False, 'HS'],
 97                       [80, 184, 80, 3, 1, False, 'HS'],
 98                       [80, 480, 112, 3, 1, True, 'HS'],
 99                       [112, 672, 112, 3, 1, True, 'HS'],
100                       [112, 672, 160, 5, 2, True, 'HS'],
101                       [160, 960, 160, 5, 1, True, 'HS'],
102                       [160, 960, 160, 5, 1, True, 'HS']]
103  
104         #定义一个有序字典存放网络结构
105         modules=OrderedDict()
106         modules.update({'layer1':baseConv(inchannel=3,kernel_size=3,outchannel=16,stride=2,active='HS')})
107  
108         #开始配置
109         for idx,layer in enumerate(net_config):
110             modules.update({'bneck_{}'.format(idx):bneckModule(layer[0],layer[1],layer[2],layer[3],layer[4],layer[5],layer[6])})
111  
112         modules.update({'conv_1*1':baseConv(layer[2],960,1,stride=1,active='HS')})
113         modules.update({'pool':nn.AdaptiveAvgPool2d((1,1))})
114  
115         self.module=nn.Sequential(modules)
116  
117         self.classifier=nn.Sequential(
118             nn.Linear(960,1280),
119             nn.Hardswish(),
120             nn.Dropout(p=0.2),
121             nn.Linear(1280,num_classes)
122         )
123  
124         if init_weight:
125             self.init_weight()
126  
127     def init_weight(self):
128         for w in self.modules():
129             if isinstance(w, nn.Conv2d):
130                 nn.init.kaiming_normal_(w.weight, mode='fan_out')
131                 if w.bias is not None:
132                     nn.init.zeros_(w.bias)
133             elif isinstance(w, nn.BatchNorm2d):
134                 nn.init.ones_(w.weight)
135                 nn.init.zeros_(w.bias)
136             elif isinstance(w, nn.Linear):
137                 nn.init.normal_(w.weight, 0, 0.01)
138                 nn.init.zeros_(w.bias)
139  
140  
141     def forward(self,x):
142         out=self.module(x)
143         out=out.view(out.size(0),-1)
144         out=self.classifier(out)
145         return out
146  
View Code

ClassifyNet_train.py

  1 import torch
  2 from torch.utils.data import DataLoader
  3 from torch import nn, optim
  4 from torchvision import datasets, transforms
  5 from torchvision.transforms.functional import InterpolationMode
  6 
  7 from matplotlib import pyplot as plt
  8 
  9 
 10 import time
 11 
 12 from Lenet5 import Lenet5_new
 13 from Resnet18 import ResNet18,ResNet18_new
 14 from AlexNet import AlexNet
 15 from Vgg16 import VGGNet16
 16 from Densenet import DenseNet121, DenseNet169, DenseNet201, DenseNet264
 17 
 18 from NIN import NIN_Net
 19 from GoogleNet import GoogLeNet
 20 from MobileNet_v3 import mobilenet_v3
 21 
 22 def main():
 23     
 24     print("Load datasets...")
 25     
 26     # transforms.RandomHorizontalFlip(p=0.5)---以0.5的概率对图片做水平横向翻转
 27     # transforms.ToTensor()---shape从(H,W,C)->(C,H,W), 每个像素点从(0-255)映射到(0-1):直接除以255
 28     # transforms.Normalize---先将输入归一化到(0,1),像素点通过"(x-mean)/std",将每个元素分布到(-1,1)
 29     transform_train = transforms.Compose([
 30                         transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
 31                         # transforms.RandomCrop(32, padding=4),  # 先四周填充0,在吧图像随机裁剪成32*32
 32                         transforms.RandomHorizontalFlip(p=0.5),
 33                         transforms.ToTensor(),
 34                         transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
 35                     ])
 36 
 37     transform_test = transforms.Compose([
 38                         transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
 39                         # transforms.RandomCrop(32, padding=4),  # 先四周填充0,在吧图像随机裁剪成32*32
 40                         transforms.ToTensor(),
 41                         transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
 42                     ])
 43     
 44     # 内置函数下载数据集
 45     train_dataset = datasets.CIFAR10(root="./data/Cifar10/", train=True, 
 46                                      transform = transform_train,
 47                                      download=True)
 48     test_dataset = datasets.CIFAR10(root = "./data/Cifar10/", 
 49                                     train = False, 
 50                                     transform = transform_test,
 51                                     download=True)
 52     
 53     print(len(train_dataset), len(test_dataset))
 54     
 55     Batch_size = 64
 56     train_loader = DataLoader(train_dataset, batch_size=Batch_size,  shuffle = True, num_workers=4)
 57     test_loader = DataLoader(test_dataset, batch_size = Batch_size, shuffle = False, num_workers=4)
 58     
 59     # 设置CUDA
 60     device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 61 
 62     # 初始化模型
 63     # 直接更换模型就行,其他无需操作
 64     # model = Lenet5_new().to(device)
 65     # model = ResNet18().to(device)
 66     # model = ResNet18_new().to(device)
 67     # model = VGGNet16().to(device)
 68     # model = DenseNet121().to(device)
 69     # model  = DenseNet169().to(device)
 70 
 71     # model = NIN_Net().to(device)
 72     
 73     # model = GoogLeNet().to(device)
 74     model = mobilenet_v3().to(device)
 75     
 76     # model = AlexNet(num_classes=10, init_weights=True).to(device)
 77     print(" mobilenet_v3 train...")
 78       
 79     # 构造损失函数和优化器
 80     criterion = nn.CrossEntropyLoss() # 多分类softmax构造损失
 81     # opt = optim.SGD(model.parameters(), lr=0.01, momentum=0.8, weight_decay=0.001)
 82     opt = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0005)
 83     
 84     # 动态更新学习率 ------每隔step_size : lr = lr * gamma
 85     schedule = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.6, last_epoch=-1)
 86     
 87     # 开始训练
 88     print("Start Train...")
 89 
 90     epochs = 100
 91    
 92     loss_list = []
 93     train_acc_list =[]
 94     test_acc_list = []
 95     epochs_list = []
 96     
 97     for epoch in range(0, epochs):
 98          
 99         start = time.time()
100         
101         model.train()
102         
103         running_loss = 0.0
104         batch_num = 0
105         
106         for i, (inputs, labels) in enumerate(train_loader):
107             
108             inputs, labels = inputs.to(device), labels.to(device)
109             
110             # 将数据送入模型训练
111             outputs = model(inputs)
112             # 计算损失
113             loss = criterion(outputs, labels).to(device)
114             
115             # 重置梯度
116             opt.zero_grad()
117             # 计算梯度,反向传播
118             loss.backward()
119             # 根据反向传播的梯度值优化更新参数
120             opt.step()
121             
122             # 100个batch的 loss 之和
123             running_loss += loss.item()
124             # loss_list.append(loss.item())
125             batch_num+=1
126             
127             
128         epochs_list.append(epoch)
129             
130         # 每一轮结束输出一下当前的学习率 lr
131         lr_1 = opt.param_groups[0]['lr']
132         print("learn_rate:%.15f" % lr_1)
133         schedule.step()
134         
135         end = time.time()
136         print('epoch = %d/100, batch_num = %d, loss = %.6f, time = %.3f' % (epoch+1, batch_num, running_loss/batch_num, end-start))
137         running_loss=0.0    
138         
139         # 每个epoch训练结束,都进行一次测试验证
140         model.eval()
141         train_correct = 0.0
142         train_total = 0
143 
144         test_correct = 0.0
145         test_total = 0
146         
147          # 训练模式不需要反向传播更新梯度
148         with torch.no_grad():
149             
150             # print("=======================train=======================")
151             for inputs, labels in train_loader:
152                 inputs, labels = inputs.to(device), labels.to(device)
153                 outputs = model(inputs)
154 
155                 pred = outputs.argmax(dim=1)  # 返回每一行中最大值元素索引
156                 train_total += inputs.size(0)
157                 train_correct += torch.eq(pred, labels).sum().item()
158           
159             
160             # print("=======================test=======================")
161             for inputs, labels in test_loader:
162                 inputs, labels = inputs.to(device), labels.to(device)
163                 outputs = model(inputs)
164 
165                 pred = outputs.argmax(dim=1)  # 返回每一行中最大值元素索引
166                 test_total += inputs.size(0)
167                 test_correct += torch.eq(pred, labels).sum().item()
168 
169             print("train_total = %d, Accuracy = %.5f %%,  test_total= %d, Accuracy = %.5f %%" %(train_total, 100 * train_correct / train_total, test_total, 100 * test_correct / test_total))    
170 
171             train_acc_list.append(100 * train_correct / train_total)
172             test_acc_list.append(100 * test_correct / test_total)
173 
174         # print("Accuracy of the network on the 10000 test images:%.5f %%" % (100 * test_correct / test_total))
175         # print("===============================================")
176 
177     fig = plt.figure(figsize=(4, 4))
178     
179     plt.plot(epochs_list, train_acc_list, label='train_acc_list')
180     plt.plot(epochs_list, test_acc_list, label='test_acc_list')
181     plt.legend()
182     plt.title("train_test_acc")
183     plt.savefig('mobilenet_v3_acc_epoch_{:04d}.png'.format(epochs))
184     plt.close()
185     
186 if __name__ == "__main__":
187     
188     main()
View Code

Loss和acc

  1 torch.Size([64, 10])
  2 PyTorch Version:  1.12.1+cu102
  3 Torchvision Version:  0.13.1+cu102
  4 Load datasets...
  5 Files already downloaded and verified
  6 Files already downloaded and verified
  7 50000 10000
  8  mobilenet_v3 train...
  9 Start Train...
 10 learn_rate:0.010000000000000
 11 epoch = 1/100, batch_num = 782, loss = 2.203190, time = 77.231
 12 train_total = 50000, Accuracy = 16.68800 %,  test_total= 10000, Accuracy = 16.80000 %
 13 learn_rate:0.010000000000000
 14 epoch = 2/100, batch_num = 782, loss = 1.756507, time = 78.007
 15 train_total = 50000, Accuracy = 43.36200 %,  test_total= 10000, Accuracy = 42.63000 %
 16 learn_rate:0.010000000000000
 17 epoch = 3/100, batch_num = 782, loss = 1.250656, time = 78.298
 18 train_total = 50000, Accuracy = 59.96600 %,  test_total= 10000, Accuracy = 58.98000 %
 19 learn_rate:0.010000000000000
 20 epoch = 4/100, batch_num = 782, loss = 0.965974, time = 78.311
 21 train_total = 50000, Accuracy = 69.11800 %,  test_total= 10000, Accuracy = 67.20000 %
 22 learn_rate:0.010000000000000
 23 epoch = 5/100, batch_num = 782, loss = 0.809132, time = 78.272
 24 train_total = 50000, Accuracy = 71.93400 %,  test_total= 10000, Accuracy = 69.64000 %
 25 learn_rate:0.010000000000000
 26 epoch = 6/100, batch_num = 782, loss = 0.687272, time = 78.191
 27 train_total = 50000, Accuracy = 79.06600 %,  test_total= 10000, Accuracy = 76.36000 %
 28 learn_rate:0.010000000000000
 29 epoch = 7/100, batch_num = 782, loss = 0.590740, time = 78.254
 30 train_total = 50000, Accuracy = 82.03600 %,  test_total= 10000, Accuracy = 79.09000 %
 31 learn_rate:0.010000000000000
 32 epoch = 8/100, batch_num = 782, loss = 0.525424, time = 78.430
 33 train_total = 50000, Accuracy = 83.77600 %,  test_total= 10000, Accuracy = 80.88000 %
 34 learn_rate:0.010000000000000
 35 epoch = 9/100, batch_num = 782, loss = 0.471912, time = 78.602
 36 train_total = 50000, Accuracy = 84.00200 %,  test_total= 10000, Accuracy = 80.42000 %
 37 learn_rate:0.010000000000000
 38 epoch = 10/100, batch_num = 782, loss = 0.427597, time = 78.734
 39 train_total = 50000, Accuracy = 87.13400 %,  test_total= 10000, Accuracy = 83.59000 %
 40 learn_rate:0.006000000000000
 41 epoch = 11/100, batch_num = 782, loss = 0.333546, time = 77.783
 42 train_total = 50000, Accuracy = 91.40800 %,  test_total= 10000, Accuracy = 85.92000 %
 43 learn_rate:0.006000000000000
 44 epoch = 12/100, batch_num = 782, loss = 0.303028, time = 78.120
 45 train_total = 50000, Accuracy = 89.84200 %,  test_total= 10000, Accuracy = 84.55000 %
 46 learn_rate:0.006000000000000
 47 epoch = 13/100, batch_num = 782, loss = 0.283803, time = 78.504
 48 train_total = 50000, Accuracy = 92.21400 %,  test_total= 10000, Accuracy = 85.99000 %
 49 learn_rate:0.006000000000000
 50 epoch = 14/100, batch_num = 782, loss = 0.266681, time = 78.542
 51 train_total = 50000, Accuracy = 91.92000 %,  test_total= 10000, Accuracy = 85.35000 %
 52 learn_rate:0.006000000000000
 53 epoch = 15/100, batch_num = 782, loss = 0.256393, time = 78.583
 54 train_total = 50000, Accuracy = 92.29400 %,  test_total= 10000, Accuracy = 86.37000 %
 55 learn_rate:0.006000000000000
 56 epoch = 16/100, batch_num = 782, loss = 0.245531, time = 79.005
 57 train_total = 50000, Accuracy = 94.00400 %,  test_total= 10000, Accuracy = 86.92000 %
 58 learn_rate:0.006000000000000
 59 epoch = 17/100, batch_num = 782, loss = 0.227954, time = 78.575
 60 train_total = 50000, Accuracy = 93.80200 %,  test_total= 10000, Accuracy = 86.95000 %
 61 learn_rate:0.006000000000000
 62 epoch = 18/100, batch_num = 782, loss = 0.218921, time = 77.286
 63 train_total = 50000, Accuracy = 93.11600 %,  test_total= 10000, Accuracy = 85.96000 %
 64 learn_rate:0.006000000000000
 65 epoch = 19/100, batch_num = 782, loss = 0.212411, time = 78.182
 66 train_total = 50000, Accuracy = 94.77600 %,  test_total= 10000, Accuracy = 87.32000 %
 67 learn_rate:0.006000000000000
 68 epoch = 20/100, batch_num = 782, loss = 0.195866, time = 79.090
 69 train_total = 50000, Accuracy = 95.22400 %,  test_total= 10000, Accuracy = 87.53000 %
 70 learn_rate:0.003600000000000
 71 epoch = 21/100, batch_num = 782, loss = 0.128505, time = 78.412
 72 train_total = 50000, Accuracy = 97.53800 %,  test_total= 10000, Accuracy = 88.64000 %
 73 learn_rate:0.003600000000000
 74 epoch = 22/100, batch_num = 782, loss = 0.108364, time = 78.324
 75 train_total = 50000, Accuracy = 97.78600 %,  test_total= 10000, Accuracy = 88.87000 %
 76 learn_rate:0.003600000000000
 77 epoch = 23/100, batch_num = 782, loss = 0.101737, time = 78.592
 78 train_total = 50000, Accuracy = 97.65400 %,  test_total= 10000, Accuracy = 88.23000 %
 79 learn_rate:0.003600000000000
 80 epoch = 24/100, batch_num = 782, loss = 0.103863, time = 77.143
 81 train_total = 50000, Accuracy = 97.61200 %,  test_total= 10000, Accuracy = 88.13000 %
 82 learn_rate:0.003600000000000
 83 epoch = 25/100, batch_num = 782, loss = 0.100137, time = 77.128
 84 train_total = 50000, Accuracy = 97.76000 %,  test_total= 10000, Accuracy = 88.32000 %
 85 learn_rate:0.003600000000000
 86 epoch = 26/100, batch_num = 782, loss = 0.090839, time = 78.363
 87 train_total = 50000, Accuracy = 98.33200 %,  test_total= 10000, Accuracy = 88.74000 %
 88 learn_rate:0.003600000000000
 89 epoch = 27/100, batch_num = 782, loss = 0.098832, time = 77.353
 90 train_total = 50000, Accuracy = 97.77800 %,  test_total= 10000, Accuracy = 88.31000 %
 91 learn_rate:0.003600000000000
 92 epoch = 28/100, batch_num = 782, loss = 0.092341, time = 78.656
 93 train_total = 50000, Accuracy = 97.42000 %,  test_total= 10000, Accuracy = 87.87000 %
 94 learn_rate:0.003600000000000
 95 epoch = 29/100, batch_num = 782, loss = 0.092752, time = 78.446
 96 train_total = 50000, Accuracy = 98.16000 %,  test_total= 10000, Accuracy = 88.81000 %
 97 learn_rate:0.003600000000000
 98 epoch = 30/100, batch_num = 782, loss = 0.089529, time = 78.002
 99 train_total = 50000, Accuracy = 98.39800 %,  test_total= 10000, Accuracy = 88.99000 %
100 learn_rate:0.002160000000000
101 epoch = 31/100, batch_num = 782, loss = 0.043446, time = 78.491
102 train_total = 50000, Accuracy = 99.53600 %,  test_total= 10000, Accuracy = 89.99000 %
103 learn_rate:0.002160000000000
104 epoch = 32/100, batch_num = 782, loss = 0.031758, time = 78.166
105 train_total = 50000, Accuracy = 99.72200 %,  test_total= 10000, Accuracy = 90.19000 %
106 learn_rate:0.002160000000000
107 epoch = 33/100, batch_num = 782, loss = 0.027834, time = 78.746
108 train_total = 50000, Accuracy = 99.76000 %,  test_total= 10000, Accuracy = 90.02000 %
109 learn_rate:0.002160000000000
110 epoch = 34/100, batch_num = 782, loss = 0.029022, time = 78.762
111 train_total = 50000, Accuracy = 99.80600 %,  test_total= 10000, Accuracy = 90.17000 %
112 learn_rate:0.002160000000000
113 epoch = 35/100, batch_num = 782, loss = 0.025741, time = 78.040
114 train_total = 50000, Accuracy = 99.71600 %,  test_total= 10000, Accuracy = 89.72000 %
115 learn_rate:0.002160000000000
116 epoch = 36/100, batch_num = 782, loss = 0.026187, time = 79.447
117 train_total = 50000, Accuracy = 99.75200 %,  test_total= 10000, Accuracy = 89.92000 %
118 learn_rate:0.002160000000000
119 epoch = 37/100, batch_num = 782, loss = 0.025791, time = 79.629
120 train_total = 50000, Accuracy = 99.68600 %,  test_total= 10000, Accuracy = 89.52000 %
121 learn_rate:0.002160000000000
122 epoch = 38/100, batch_num = 782, loss = 0.028179, time = 79.393
123 train_total = 50000, Accuracy = 99.44800 %,  test_total= 10000, Accuracy = 89.50000 %
124 learn_rate:0.002160000000000
125 epoch = 39/100, batch_num = 782, loss = 0.029973, time = 79.052
126 train_total = 50000, Accuracy = 99.69000 %,  test_total= 10000, Accuracy = 89.52000 %
127 learn_rate:0.002160000000000
128 epoch = 40/100, batch_num = 782, loss = 0.031596, time = 77.546
129 train_total = 50000, Accuracy = 99.80400 %,  test_total= 10000, Accuracy = 90.25000 %
130 learn_rate:0.001296000000000
131 epoch = 41/100, batch_num = 782, loss = 0.013997, time = 78.985
132 train_total = 50000, Accuracy = 99.95400 %,  test_total= 10000, Accuracy = 90.57000 %
133 learn_rate:0.001296000000000
134 epoch = 42/100, batch_num = 782, loss = 0.008993, time = 79.669
135 train_total = 50000, Accuracy = 99.98200 %,  test_total= 10000, Accuracy = 91.05000 %
136 learn_rate:0.001296000000000
137 epoch = 43/100, batch_num = 782, loss = 0.009255, time = 79.048
138 train_total = 50000, Accuracy = 99.98400 %,  test_total= 10000, Accuracy = 90.95000 %
139 learn_rate:0.001296000000000
140 epoch = 44/100, batch_num = 782, loss = 0.008394, time = 79.771
141 train_total = 50000, Accuracy = 99.99200 %,  test_total= 10000, Accuracy = 90.77000 %
142 learn_rate:0.001296000000000
143 epoch = 45/100, batch_num = 782, loss = 0.007559, time = 79.583
144 train_total = 50000, Accuracy = 99.98400 %,  test_total= 10000, Accuracy = 90.54000 %
145 learn_rate:0.001296000000000
146 epoch = 46/100, batch_num = 782, loss = 0.006794, time = 78.839
147 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 90.87000 %
148 learn_rate:0.001296000000000
149 epoch = 47/100, batch_num = 782, loss = 0.006278, time = 79.888
150 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 90.74000 %
151 learn_rate:0.001296000000000
152 epoch = 48/100, batch_num = 782, loss = 0.006851, time = 78.965
153 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 90.61000 %
154 learn_rate:0.001296000000000
155 epoch = 49/100, batch_num = 782, loss = 0.006146, time = 80.085
156 train_total = 50000, Accuracy = 99.99600 %,  test_total= 10000, Accuracy = 90.61000 %
157 learn_rate:0.001296000000000
158 epoch = 50/100, batch_num = 782, loss = 0.006881, time = 79.867
159 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 90.81000 %
160 learn_rate:0.000777600000000
161 epoch = 51/100, batch_num = 782, loss = 0.004786, time = 80.034
162 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.01000 %
163 learn_rate:0.000777600000000
164 epoch = 52/100, batch_num = 782, loss = 0.004405, time = 79.880
165 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.04000 %
166 learn_rate:0.000777600000000
167 epoch = 53/100, batch_num = 782, loss = 0.004414, time = 79.312
168 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.21000 %
169 learn_rate:0.000777600000000
170 epoch = 54/100, batch_num = 782, loss = 0.004097, time = 78.518
171 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.03000 %
172 learn_rate:0.000777600000000
173 epoch = 55/100, batch_num = 782, loss = 0.004284, time = 79.403
174 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 90.97000 %
175 learn_rate:0.000777600000000
176 epoch = 56/100, batch_num = 782, loss = 0.003366, time = 79.114
177 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 90.99000 %
178 learn_rate:0.000777600000000
179 epoch = 57/100, batch_num = 782, loss = 0.003687, time = 79.430
180 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.11000 %
181 learn_rate:0.000777600000000
182 epoch = 58/100, batch_num = 782, loss = 0.003368, time = 79.565
183 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 90.95000 %
184 learn_rate:0.000777600000000
185 epoch = 59/100, batch_num = 782, loss = 0.003185, time = 79.207
186 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.06000 %
187 learn_rate:0.000777600000000
188 epoch = 60/100, batch_num = 782, loss = 0.003753, time = 79.090
189 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.16000 %
190 learn_rate:0.000466560000000
191 epoch = 61/100, batch_num = 782, loss = 0.002950, time = 79.712
192 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 91.00000 %
193 learn_rate:0.000466560000000
194 epoch = 62/100, batch_num = 782, loss = 0.003225, time = 78.063
195 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 90.96000 %
196 learn_rate:0.000466560000000
197 epoch = 63/100, batch_num = 782, loss = 0.002895, time = 79.927
198 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 91.31000 %
199 learn_rate:0.000466560000000
200 epoch = 64/100, batch_num = 782, loss = 0.003493, time = 79.865
201 train_total = 50000, Accuracy = 99.99800 %,  test_total= 10000, Accuracy = 91.24000 %
202 learn_rate:0.000466560000000
203 epoch = 65/100, batch_num = 782, loss = 0.002798, time = 79.844
204 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.23000 %
205 learn_rate:0.000466560000000
206 epoch = 66/100, batch_num = 782, loss = 0.002702, time = 77.140
207 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.10000 %
208 learn_rate:0.000466560000000
209 epoch = 67/100, batch_num = 782, loss = 0.002807, time = 79.522
210 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.07000 %
211 learn_rate:0.000466560000000
212 epoch = 68/100, batch_num = 782, loss = 0.002869, time = 79.749
213 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.23000 %
214 learn_rate:0.000466560000000
215 epoch = 69/100, batch_num = 782, loss = 0.003123, time = 79.775
216 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.30000 %
217 learn_rate:0.000466560000000
218 epoch = 70/100, batch_num = 782, loss = 0.003094, time = 79.988
219 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 90.94000 %
220 learn_rate:0.000279936000000
221 epoch = 71/100, batch_num = 782, loss = 0.002628, time = 79.398
222 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.04000 %
223 learn_rate:0.000279936000000
224 epoch = 72/100, batch_num = 782, loss = 0.002965, time = 79.861
225 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.05000 %
226 learn_rate:0.000279936000000
227 epoch = 73/100, batch_num = 782, loss = 0.002601, time = 79.949
228 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.26000 %
229 learn_rate:0.000279936000000
230 epoch = 74/100, batch_num = 782, loss = 0.002460, time = 78.649
231 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.18000 %
232 learn_rate:0.000279936000000
233 epoch = 75/100, batch_num = 782, loss = 0.002345, time = 79.085
234 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.15000 %
235 learn_rate:0.000279936000000
236 epoch = 76/100, batch_num = 782, loss = 0.002517, time = 77.715
237 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.18000 %
238 learn_rate:0.000279936000000
239 epoch = 77/100, batch_num = 782, loss = 0.002550, time = 79.459
240 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 90.98000 %
241 learn_rate:0.000279936000000
242 epoch = 78/100, batch_num = 782, loss = 0.002524, time = 80.004
243 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.07000 %
244 learn_rate:0.000279936000000
245 epoch = 79/100, batch_num = 782, loss = 0.002640, time = 78.525
246 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.14000 %
247 learn_rate:0.000279936000000
248 epoch = 80/100, batch_num = 782, loss = 0.002967, time = 79.542
249 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.12000 %
250 learn_rate:0.000167961600000
251 epoch = 81/100, batch_num = 782, loss = 0.002453, time = 79.494
252 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.26000 %
253 learn_rate:0.000167961600000
254 epoch = 82/100, batch_num = 782, loss = 0.002784, time = 79.490
255 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.21000 %
256 learn_rate:0.000167961600000
257 epoch = 83/100, batch_num = 782, loss = 0.002664, time = 78.257
258 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.21000 %
259 learn_rate:0.000167961600000
260 epoch = 84/100, batch_num = 782, loss = 0.002433, time = 79.710
261 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.17000 %
262 learn_rate:0.000167961600000
263 epoch = 85/100, batch_num = 782, loss = 0.002392, time = 78.902
264 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.11000 %
265 learn_rate:0.000167961600000
266 epoch = 86/100, batch_num = 782, loss = 0.003005, time = 79.356
267 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.21000 %
268 learn_rate:0.000167961600000
269 epoch = 87/100, batch_num = 782, loss = 0.002312, time = 79.344
270 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.18000 %
271 learn_rate:0.000167961600000
272 epoch = 88/100, batch_num = 782, loss = 0.002288, time = 79.583
273 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.22000 %
274 learn_rate:0.000167961600000
275 epoch = 89/100, batch_num = 782, loss = 0.002758, time = 77.864
276 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.26000 %
277 learn_rate:0.000167961600000
278 epoch = 90/100, batch_num = 782, loss = 0.002235, time = 77.513
279 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.05000 %
280 learn_rate:0.000100776960000
281 epoch = 91/100, batch_num = 782, loss = 0.002327, time = 79.680
282 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.1                                                                                        5000 %
283 learn_rate:0.000100776960000
284 epoch = 92/100, batch_num = 782, loss = 0.002182, time = 79.813
285 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.3                                                                                        3000 %
286 learn_rate:0.000100776960000
287 epoch = 93/100, batch_num = 782, loss = 0.002299, time = 79.420
288 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.2                                                                                        7000 %
289 learn_rate:0.000100776960000
290 epoch = 94/100, batch_num = 782, loss = 0.002221, time = 79.960
291 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.2                                                                                        5000 %
292 learn_rate:0.000100776960000
293 epoch = 95/100, batch_num = 782, loss = 0.002262, time = 77.989
294 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.1                                                                                        7000 %
295 learn_rate:0.000100776960000
296 epoch = 96/100, batch_num = 782, loss = 0.002378, time = 79.152
297 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.2                                                                                        1000 %
298 learn_rate:0.000100776960000
299 epoch = 97/100, batch_num = 782, loss = 0.002371, time = 79.593
300 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.2                                                                                        6000 %
301 learn_rate:0.000100776960000
302 epoch = 98/100, batch_num = 782, loss = 0.002325, time = 78.810
303 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.2                                                                                        1000 %
304 learn_rate:0.000100776960000
305 epoch = 99/100, batch_num = 782, loss = 0.002138, time = 79.787
306 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.1                                                                                        5000 %
307 learn_rate:0.000100776960000
308 epoch = 100/100, batch_num = 782, loss = 0.002789, time = 79.092
309 train_total = 50000, Accuracy = 100.00000 %,  test_total= 10000, Accuracy = 91.0                                                                                        7000 %
View Code

 

 图 mobilenet_v3_acc_epoch_0100

标签:loss,MobileNet,09,train,图像,test,100,total,Accuracy
From: https://www.cnblogs.com/zhaopengpeng/p/17048500.html

相关文章

  • 代码随想录算法训练营第二天|977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II
    一、参考资料有序数组的平方题目链接:https://leetcode.cn/problems/squares-of-a-sorted-array/文章讲解:https://programmercarl.com/0977.有序数组的平方.html视频讲......
  • 每日食词—day097
    diagramn. v.图表、图形、示意图、简图、图shapen. v.形状、外形、图形squareadj. n. v. adv.方形、方块、正方形、平方、广场circlen. v.圆、圆形、圈......
  • 每日食词—day096
    allocationn.分配、指派、已分配量、分配单位exchangen. v.交换、互换、调换、更换、交换机、传输、交易、兑换、交流perfectadj. v. n.完美、完善的、完全的......
  • Codeforces Round #809 (Div. 2)
    题目链接A核心思路就是一个简单的模拟,没什么好说的,居然做了我十五分钟。还是太菜了。//Problem:A.AnotherStringMinimizationProblem//Contest:Codeforces-......
  • 读写显示图像(opencv pyplot)
    1importcv2ascv2importnumpyasnp3frommatplotlibimportpyplotasplt45if__name__=='__main__':67#读取图片8img=cv.imrea......
  • python opencv遍历图像数据集是否存在错误
    python3.9的环境,opencv3.4:平时在准备图像数据集是,有可能其中有个别图像错误引起在深度学习训练到一半时报错,所有先检查一下数据集中的图像是否有错误图像:importosimportc......
  • python opencv通过读取图像数据列表文件来检查图像数据是否存在错误
    python3.9环境,opencv3.4:平时在准备深度学习数据集时,会有图像和对应的图像列表文件,可以使用opencv通过列表文件来读取图像,看是否存在错误数据:使用python脚本来检查数据:impor......
  • POJ - 1094 Sorting It All Out
    POJ-1094SortingItAllOut题解:Floyd传递闭包A<BA<CB<CC<DB<DA<B首先他给你这些关系,比如说:A<B,B<C我们很容易就能推出啊A<C,显然满足传递性,所以我们利用传递......
  • 009排障容器
    一、背景好多业务容器做了裁剪,没法进行基本的调试,所以需要启动一个单独的集成很多排错工具的镜像二、现有方案https://hub.docker.com/r/nicolaka/netshoot(1)k8s......
  • RMAN-06091: no channel allocated for maintenance (of an appropriate type)
    问题描述releasedchannel:c1releasedchannel:c2RMAN-00571:===========================================================RMAN-00569:===============ERRORMESSA......