首页 > 其他分享 >slam14(1) v4_1 卡尔曼滤波3 使用例子和代码 ardunio mpu6050

slam14(1) v4_1 卡尔曼滤波3 使用例子和代码 ardunio mpu6050

时间:2022-12-08 02:00:21浏览次数:50  
标签:angle Kalman 卡尔曼滤波 float slam14 ardunio print Serial dt

 

代码

https://github.com/TKJElectronics/KalmanFilter

 

 

 

原理剖析

原理2 卡尔曼融合滤波

https://zhuanlan.zhihu.com/p/36374943

 

关键点

1 他的偏置和噪声方程 根据经验给了数值

 

 

 经过验证,初始参数设置为以下值时适用于大多数的IMU,并且这些初始参数将会使mpu6050工作在最佳状态;

float Q_angle = 0.001;
float Q_gyroBias = 0.003;
float R_measure = 0.03;

  

 

2 误差的计算 测量值-预测值

状态转移矩阵是1

 

 

 

 

 

 

测量值z 使用x和y相对于z轴重力的arctan计算的

#ifdef RESTRICT_PITCH // Eq. 25 and 26
  double roll  = atan2(accY, accZ) * RAD_TO_DEG;
  double pitch = atan(-accX / sqrt(accY * accY + accZ * accZ)) * RAD_TO_DEG;
#else // Eq. 28 and 29
  double roll  = atan(accY / sqrt(accX * accX + accZ * accZ)) * RAD_TO_DEG;
  double pitch = atan2(-accX, accZ) * RAD_TO_DEG;
#endif

 进一步算残差

kalAngleX = kalmanX.getAngle(roll, gyroXrate, dt); 

  

 

 

 

 

原理1 IMU本身运行和坐标系转换积分原理

IMU姿态解算

IMU,即惯性测量单元,一般包含三轴陀螺仪与三轴加速度计。之前的文章

https://zhuanlan.zhihu.com/p/165156300

 

 

 

 

 

 

MPU6050基本功能

  • 3轴陀螺仪

陀螺仪,测量的是绕xyz轴转动的角速度,对角速度积分可以得到角度。

  • 3轴加速度计

加速度计,测量的是xyz方向受到的加速度。在静止时,测量到的是重力加速度,因此当物体倾斜时,根据重力的分力可以粗略的计算角度。在运动时,除了重力加速度,还叠加了由于运动产生的加速度。

 

DMP简介

DMP就是MPU6050内部的运动引擎,全称Digital Motion Processor,直接输出四元数,可以减轻外围微处理器的工作负担且避免了繁琐的滤波和数据融合。Motion Driver是Invensense针对其运动传感器的软件包,并非全部开源,核心的算法部分是针对ARM处理器和MSP430处理器编译成了静态链接库,适用于MPU6050、MPU6500、MPU9150、MPU9250等传感器。

四元数转欧拉角

四元数可以方便的表示3维空间的旋转,但其概念不太好理解,可以先类比复数,复数表示的其实是2维平面中的旋转。

四元数的基本表示形式为:q0+q1*i+q2*j+q3*k,即1个实部3个虚部,具体细节本篇先不做展开介绍。

四元数虽然方便表示旋转,但其形式不太直观,旋转转换成pitch、roll、yaw的表示形式,方便观察姿态。

四元数的基本表示形式为:q0+q1*i+q2*j+q3*k,即1个实部3个虚部,具体细节本篇先不做展开介绍。

四元数虽然方便表示旋转,但其形式不太直观,旋转转换成pitch、roll、yaw的表示形式,方便观察姿态。

转换公式为:

https://zhuanlan.zhihu.com/p/195683958

本篇的姿态解算选用的旋转顺序为ZYX,即IMU坐标系初始时刻与大地坐标系重合,然后依次绕自己的Z、Y、X轴进行旋转,这里先自定义一下每次的旋转名称和符号:

  • 绕IMU的Z轴旋转:航向角yaw, 转动 y 角度
  • 绕IMU的Y轴旋转:俯仰角pitch,转动 p 角度
  • 绕IMU的X轴旋转:横滚角row, 转动 r 角度

另外,横滚roll,俯仰pitch,偏航yaw的实际含义如下图:

 

 

 

 

2 旋转矩阵

旋转矩阵的知识请先参阅

这里只列出本篇需要用到的3个旋转矩阵,注意这3个旋转矩阵是坐标变换的旋转矩阵。

程序表示为:

pitch = asin(-2 * q1 * q3 + 2 * q0* q2)
roll  = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)
yaw   = atan2(2*(q1*q2 + q0*q3),q0*q0+q1*q1-q2*q2-q3*q3)

  

3 欧拉角旋转

欧拉角旋转的知识请先参阅

这里需要说明的是,本篇需要用到的绕着自己运动的轴,以ZYX顺序旋转。

4 加速度计解算姿态角

加速度计测量的是其感受到的加速度,在静止的时候,其本身是没有加速运动的,但因为重力加速度的作用,根据相对运动理论,其感受的加速度与重力加速度正好相反,即读到的数据是竖直向上的。加速度计的英文简写为acc,下面用首字母a代表加速度计数据。

加速度利用静止时刻感受到重力加速度,计算姿态:

  • 当加速度计水平放置,即Z轴竖直向上时,Z轴可以读到1g的数值(g为重力加速度),X轴和Y轴两个方向读到0,可以记作(0,0,g)。
  • 当加速度计旋转一定的姿态时,重力加速度会在加速度的3个轴上产生相应的分量,其本质是大地坐标系下的(0,0,g)在新的加速度计自身坐标系下的坐标,加速度计读到的3个值就是(0,0,g)向量的新坐标。

姿态的旋转选用ZYX顺序的3次旋转方式,则上述描述可表示为:

 

 解这个方程,可以得到roll和pitch角(由于绕Z旋转时,感受到的重力加速度是不变的,因此加速度计无法计算yaw角)

 

 

 3次旋转过程的分解过程如下图:

 

 

5 陀螺仪解算姿态角

陀螺仪测量的绕3个轴转动的角速度,因此,对角速度积分,可以得到角度。陀螺仪的英文简写为gyro,下面用首字母g代表陀螺仪数据。

如下图,IMU在第n个时刻的姿态角度为r、p、y,其含义为IMU坐标系从初始位置,经过绕Z旋转y角度,绕Y旋转p角度,绕X旋转r角度,得到了最终的姿态,此时需要计算下一个时刻(n+1)的姿态。设n+1时刻的姿态角为r+Δr、p+Δp、y+Δy,该姿态也是经历了3次旋转。要想计算n+1时刻的姿态,只要在n时刻姿态的基础上,加上对应的姿态角度变化量即可。姿态角度的变化量可以通过角速度与采用时间周期积分即可。

 

 

 

 

 

 

这里红框中dr/dt等角速度实际是假想的角速度,用于姿态更新,姿态更新是以大地坐标系为参考,而陀螺仪在第n个状态读出的角速度是以它自己所在的坐标系为参考,需要将读到的gyro陀螺数据经过变换,才能用于计算更新第n+1次的姿态。

那dr/dt等角速度该怎样理解呢?看下面这个图,还是将其分解为3次旋转:

 

 

 

首先来看dy/dt,它是3次旋转过程中绕Z轴的yaw角的角速度,3次旋转首先就是绕着Z轴旋转,Z轴方向的单位向量可表示为[0 0 1]T,T表示向量转置,因此[0 0 dy/dt]T表示在图中状态①的坐标中绕Z的角速度。由于之后该坐标系还要经历绕Y和绕X的两次旋转,因此这里[0 0 dy/dt]T角速度在经历两次旋转后,在最终的坐标系(状态③)中的坐标也要经历两次变换。图中的[gx_Z gy_Z gz_Z]T表示3次旋转过程中绕Z轴的yaw角的角速度在最终姿态中的等效转动角速度,实际就是状态①坐标系中绕Z轴的角速度在状态③坐标系中的新的坐标。

同理,dp/dt还需要经历1次旋转变换,而dr/dt不需要经历旋转。

将dy/dt,dp/dt,dr/dt三者都变换到状态③坐标系中的新的坐标相加,实际就是状态③时刻陀螺仪自己读到的gyro数据。

所以,从dr/dt等角速度到陀螺仪读到的角速度gx等的转换关系推导过程如下:

 

 

 

进一步,再把这里的状态③理解为状态n,则根据状态n时刻读到的陀螺仪数据,反解dy/dt等角速度数据,即可更新得到状态n+1的姿态。反解就是求逆矩阵,即:

 

 

 

6 姿态融合

由上面的分析可知,加速度计在静止时刻,根据感受到的重力加速度,可以计算出roll和pitch角,并且角度计算只与当前姿态有关。而陀螺仪是对时间间隔内的角速度积分,得到每一次的角度变换量,累加到上一次的姿态角上,得到新的姿态角,陀螺仪可以计算roll、pitch、yaw三个角。

实际上,加速度仅在静止时刻可以得到较准确的姿态,而陀螺仪仅对转动时的姿态变化敏感,且陀螺仪若本身存在误差,则经过连续的时间积分,误差会不断增大。因此,需要结合两者计算的姿态,进行互补融合。当然,这里只能对roll和pitch融合,因为加速度计没有得到yaw。

 

 K为比例系数,需要根据实际来调整,如选用0.4。

 

 

代码

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

主代码

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.

 This software may be distributed and modified under the terms of the GNU
 General Public License version 2 (GPL2) as published by the Free Software
 Foundation and appearing in the file GPL2.TXT included in the packaging of
 this file. Please note that GPL2 Section 2[b] requires that all works based
 on this software must also be made publicly available under the terms of
 the GPL2 ("Copyleft").

 Contact information
 -------------------

 Kristian Lauszus, TKJ Electronics
 Web      :  http://www.tkjelectronics.com
 e-mail   :  kristianl@tkjelectronics.com
 */

#include <Wire.h>
#include "Kalman.h" // Source: https://github.com/TKJElectronics/KalmanFilter

#define RESTRICT_PITCH // Comment out to restrict roll to ±90deg instead - please read: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf

Kalman kalmanX; // Create the Kalman instances
Kalman kalmanY;

/* IMU Data */
double accX, accY, accZ;
double gyroX, gyroY, gyroZ;
int16_t tempRaw;

double gyroXangle, gyroYangle; // Angle calculate using the gyro only
double compAngleX, compAngleY; // Calculated angle using a complementary filter
double kalAngleX, kalAngleY; // Calculated angle using a Kalman filter

uint32_t timer;
uint8_t i2cData[14]; // Buffer for I2C data

// TODO: Make calibration routine

void setup() {
  Serial.begin(115200);
  Wire.begin();
#if ARDUINO >= 157
  Wire.setClock(400000UL); // Set I2C frequency to 400kHz
#else
  TWBR = ((F_CPU / 400000UL) - 16) / 2; // Set I2C frequency to 400kHz
#endif

  i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
  i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
  i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
  i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
  while (i2cWrite(0x19, i2cData, 4, false)); // Write to all four registers at once
  while (i2cWrite(0x6B, 0x01, true)); // PLL with X axis gyroscope reference and disable sleep mode

  while (i2cRead(0x75, i2cData, 1));
  if (i2cData[0] != 0x68) { // Read "WHO_AM_I" register
    Serial.print(F("Error reading sensor"));
    while (1);
  }

  delay(100); // Wait for sensor to stabilize

  /* Set kalman and gyro starting angle */
  while (i2cRead(0x3B, i2cData, 6));
  accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
  accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
  accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);

  // Source: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf eq. 25 and eq. 26
  // atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
  // It is then converted from radians to degrees
#ifdef RESTRICT_PITCH // Eq. 25 and 26
  double roll  = atan2(accY, accZ) * RAD_TO_DEG;
  double pitch = atan(-accX / sqrt(accY * accY + accZ * accZ)) * RAD_TO_DEG;
#else // Eq. 28 and 29
  double roll  = atan(accY / sqrt(accX * accX + accZ * accZ)) * RAD_TO_DEG;
  double pitch = atan2(-accX, accZ) * RAD_TO_DEG;
#endif

  kalmanX.setAngle(roll); // Set starting angle
  kalmanY.setAngle(pitch);
  gyroXangle = roll;
  gyroYangle = pitch;
  compAngleX = roll;
  compAngleY = pitch;

  timer = micros();
}

void loop() {
  /* Update all the values */
  while (i2cRead(0x3B, i2cData, 14));
  accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
  accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
  accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
  tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]);
  gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]);
  gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]);
  gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]);;

  double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
  timer = micros();

  // Source: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf eq. 25 and eq. 26
  // atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
  // It is then converted from radians to degrees
#ifdef RESTRICT_PITCH // Eq. 25 and 26
  double roll  = atan2(accY, accZ) * RAD_TO_DEG;
  double pitch = atan(-accX / sqrt(accY * accY + accZ * accZ)) * RAD_TO_DEG;
#else // Eq. 28 and 29
  double roll  = atan(accY / sqrt(accX * accX + accZ * accZ)) * RAD_TO_DEG;
  double pitch = atan2(-accX, accZ) * RAD_TO_DEG;
#endif

  double gyroXrate = gyroX / 131.0; // Convert to deg/s
  double gyroYrate = gyroY / 131.0; // Convert to deg/s

#ifdef RESTRICT_PITCH
  // This fixes the transition problem when the accelerometer angle jumps between -180 and 180 degrees
  if ((roll < -90 && kalAngleX > 90) || (roll > 90 && kalAngleX < -90)) {
    kalmanX.setAngle(roll);
    compAngleX = roll;
    kalAngleX = roll;
    gyroXangle = roll;
  } else
    kalAngleX = kalmanX.getAngle(roll, gyroXrate, dt); // Calculate the angle using a Kalman filter

  if (abs(kalAngleX) > 90)
    gyroYrate = -gyroYrate; // Invert rate, so it fits the restriced accelerometer reading
  kalAngleY = kalmanY.getAngle(pitch, gyroYrate, dt);
#else
  // This fixes the transition problem when the accelerometer angle jumps between -180 and 180 degrees
  if ((pitch < -90 && kalAngleY > 90) || (pitch > 90 && kalAngleY < -90)) {
    kalmanY.setAngle(pitch);
    compAngleY = pitch;
    kalAngleY = pitch;
    gyroYangle = pitch;
  } else
    kalAngleY = kalmanY.getAngle(pitch, gyroYrate, dt); // Calculate the angle using a Kalman filter

  if (abs(kalAngleY) > 90)
    gyroXrate = -gyroXrate; // Invert rate, so it fits the restriced accelerometer reading
  kalAngleX = kalmanX.getAngle(roll, gyroXrate, dt); // Calculate the angle using a Kalman filter
#endif

  gyroXangle += gyroXrate * dt; // Calculate gyro angle without any filter
  gyroYangle += gyroYrate * dt;
  //gyroXangle += kalmanX.getRate() * dt; // Calculate gyro angle using the unbiased rate
  //gyroYangle += kalmanY.getRate() * dt;

  compAngleX = 0.93 * (compAngleX + gyroXrate * dt) + 0.07 * roll; // Calculate the angle using a Complimentary filter
  compAngleY = 0.93 * (compAngleY + gyroYrate * dt) + 0.07 * pitch;

  // Reset the gyro angle when it has drifted too much
  if (gyroXangle < -180 || gyroXangle > 180)
    gyroXangle = kalAngleX;
  if (gyroYangle < -180 || gyroYangle > 180)
    gyroYangle = kalAngleY;

  /* Print Data */
#if 0 // Set to 1 to activate
  Serial.print(accX); Serial.print("\t");
  Serial.print(accY); Serial.print("\t");
  Serial.print(accZ); Serial.print("\t");

  Serial.print(gyroX); Serial.print("\t");
  Serial.print(gyroY); Serial.print("\t");
  Serial.print(gyroZ); Serial.print("\t");

  Serial.print("\t");
#endif

  Serial.print(roll); Serial.print("\t");
  Serial.print(gyroXangle); Serial.print("\t");
  Serial.print(compAngleX); Serial.print("\t");
  Serial.print(kalAngleX); Serial.print("\t");

  Serial.print("\t");

  Serial.print(pitch); Serial.print("\t");
  Serial.print(gyroYangle); Serial.print("\t");
  Serial.print(compAngleY); Serial.print("\t");
  Serial.print(kalAngleY); Serial.print("\t");

#if 0 // Set to 1 to print the temperature
  Serial.print("\t");

  double temperature = (double)tempRaw / 340.0 + 36.53;
  Serial.print(temperature); Serial.print("\t");
#endif

  Serial.print("\r\n");
  delay(2);
}

  I2C.ino

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.

 This software may be distributed and modified under the terms of the GNU
 General Public License version 2 (GPL2) as published by the Free Software
 Foundation and appearing in the file GPL2.TXT included in the packaging of
 this file. Please note that GPL2 Section 2[b] requires that all works based
 on this software must also be made publicly available under the terms of
 the GPL2 ("Copyleft").

 Contact information
 -------------------

 Kristian Lauszus, TKJ Electronics
 Web      :  http://www.tkjelectronics.com
 e-mail   :  kristianl@tkjelectronics.com
 */

const uint8_t IMUAddress = 0x68; // AD0 is logic low on the PCB
const uint16_t I2C_TIMEOUT = 1000; // Used to check for errors in I2C communication

uint8_t i2cWrite(uint8_t registerAddress, uint8_t data, bool sendStop) {
  return i2cWrite(registerAddress, &data, 1, sendStop); // Returns 0 on success
}

uint8_t i2cWrite(uint8_t registerAddress, uint8_t *data, uint8_t length, bool sendStop) {
  Wire.beginTransmission(IMUAddress);
  Wire.write(registerAddress);
  Wire.write(data, length);
  uint8_t rcode = Wire.endTransmission(sendStop); // Returns 0 on success
  if (rcode) {
    Serial.print(F("i2cWrite failed: "));
    Serial.println(rcode);
  }
  return rcode; // See: http://arduino.cc/en/Reference/WireEndTransmission
}

uint8_t i2cRead(uint8_t registerAddress, uint8_t *data, uint8_t nbytes) {
  uint32_t timeOutTimer;
  Wire.beginTransmission(IMUAddress);
  Wire.write(registerAddress);
  uint8_t rcode = Wire.endTransmission(false); // Don't release the bus
  if (rcode) {
    Serial.print(F("i2cRead failed: "));
    Serial.println(rcode);
    return rcode; // See: http://arduino.cc/en/Reference/WireEndTransmission
  }
  Wire.requestFrom(IMUAddress, nbytes, (uint8_t)true); // Send a repeated start and then release the bus after reading
  for (uint8_t i = 0; i < nbytes; i++) {
    if (Wire.available())
      data[i] = Wire.read();
    else {
      timeOutTimer = micros();
      while (((micros() - timeOutTimer) < I2C_TIMEOUT) && !Wire.available());
      if (Wire.available())
        data[i] = Wire.read();
      else {
        Serial.println(F("i2cRead timeout"));
        return 5; // This error value is not already taken by endTransmission
      }
    }
  }
  return 0; // Success
}

  

Kalman.h

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.

 This software may be distributed and modified under the terms of the GNU
 General Public License version 2 (GPL2) as published by the Free Software
 Foundation and appearing in the file GPL2.TXT included in the packaging of
 this file. Please note that GPL2 Section 2[b] requires that all works based
 on this software must also be made publicly available under the terms of
 the GPL2 ("Copyleft").

 Contact information
 -------------------

 Kristian Lauszus, TKJ Electronics
 Web      :  http://www.tkjelectronics.com
 e-mail   :  kristianl@tkjelectronics.com
 */

#ifndef _Kalman_h_
#define _Kalman_h_

class Kalman {
public:
    Kalman();

    // The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds
    float getAngle(float newAngle, float newRate, float dt);

    void setAngle(float angle); // Used to set angle, this should be set as the starting angle
    float getRate(); // Return the unbiased rate

    /* These are used to tune the Kalman filter */
    void setQangle(float Q_angle);
    /**
     * setQbias(float Q_bias)
     * Default value (0.003f) is in Kalman.cpp. 
     * Raise this to follow input more closely,
     * lower this to smooth result of kalman filter.
     */
    void setQbias(float Q_bias);
    void setRmeasure(float R_measure);

    float getQangle();
    float getQbias();
    float getRmeasure();

private:
    /* Kalman filter variables */
    float Q_angle; // Process noise variance for the accelerometer
    float Q_bias; // Process noise variance for the gyro bias
    float R_measure; // Measurement noise variance - this is actually the variance of the measurement noise

    float angle; // The angle calculated by the Kalman filter - part of the 2x1 state vector
    float bias; // The gyro bias calculated by the Kalman filter - part of the 2x1 state vector
    float rate; // Unbiased rate calculated from the rate and the calculated bias - you have to call getAngle to update the rate

    float P[2][2]; // Error covariance matrix - This is a 2x2 matrix
};

#endif

  

 Kalman.cpp

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.

 This software may be distributed and modified under the terms of the GNU
 General Public License version 2 (GPL2) as published by the Free Software
 Foundation and appearing in the file GPL2.TXT included in the packaging of
 this file. Please note that GPL2 Section 2[b] requires that all works based
 on this software must also be made publicly available under the terms of
 the GPL2 ("Copyleft").

 Contact information
 -------------------

 Kristian Lauszus, TKJ Electronics
 Web      :  http://www.tkjelectronics.com
 e-mail   :  kristianl@tkjelectronics.com
 */

#include "Kalman.h"

Kalman::Kalman() {
    /* We will set the variables like so, these can also be tuned by the user */
    Q_angle = 0.001f;
    Q_bias = 0.003f;
    R_measure = 0.03f;

    angle = 0.0f; // Reset the angle
    bias = 0.0f; // Reset bias

    P[0][0] = 0.0f; // Since we assume that the bias is 0 and we know the starting angle (use setAngle), the error covariance matrix is set like so - see: http://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
    P[0][1] = 0.0f;
    P[1][0] = 0.0f;
    P[1][1] = 0.0f;
};

// The angle should be in degrees and the rate should be in degrees per second and the delta time in seconds
float Kalman::getAngle(float newAngle, float newRate, float dt) {
    // KasBot V2  -  Kalman filter module - http://www.x-firm.com/?page_id=145
    // Modified by Kristian Lauszus
    // See my blog post for more information: http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it

    // Discrete Kalman filter time update equations - Time Update ("Predict")
    // Update xhat - Project the state ahead
    /* Step 1 */
    rate = newRate - bias;
    angle += dt * rate;

    // Update estimation error covariance - Project the error covariance ahead
    /* Step 2 */
    P[0][0] += dt * (dt*P[1][1] - P[0][1] - P[1][0] + Q_angle);
    P[0][1] -= dt * P[1][1];
    P[1][0] -= dt * P[1][1];
    P[1][1] += Q_bias * dt;

    // Discrete Kalman filter measurement update equations - Measurement Update ("Correct")
    // Calculate Kalman gain - Compute the Kalman gain
    /* Step 4 */
    float S = P[0][0] + R_measure; // Estimate error
    /* Step 5 */
    float K[2]; // Kalman gain - This is a 2x1 vector
    K[0] = P[0][0] / S;
    K[1] = P[1][0] / S;

    // Calculate angle and bias - Update estimate with measurement zk (newAngle)
    /* Step 3 */
    float y = newAngle - angle; // Angle difference 
    /* Step 6 */
    angle += K[0] * y;
    bias += K[1] * y;

    // Calculate estimation error covariance - Update the error covariance
    /* Step 7 */
    float P00_temp = P[0][0];
    float P01_temp = P[0][1];

    P[0][0] -= K[0] * P00_temp;
    P[0][1] -= K[0] * P01_temp;
    P[1][0] -= K[1] * P00_temp;
    P[1][1] -= K[1] * P01_temp;

    return angle;
};

void Kalman::setAngle(float angle) { this->angle = angle; }; // Used to set angle, this should be set as the starting angle
float Kalman::getRate() { return this->rate; }; // Return the unbiased rate

/* These are used to tune the Kalman filter */
void Kalman::setQangle(float Q_angle) { this->Q_angle = Q_angle; };
void Kalman::setQbias(float Q_bias) { this->Q_bias = Q_bias; };
void Kalman::setRmeasure(float R_measure) { this->R_measure = R_measure; };

float Kalman::getQangle() { return this->Q_angle; };
float Kalman::getQbias() { return this->Q_bias; };
float Kalman::getRmeasure() { return this->R_measure; };

  

 

标签:angle,Kalman,卡尔曼滤波,float,slam14,ardunio,print,Serial,dt
From: https://www.cnblogs.com/gooutlook/p/16965044.html

相关文章

  • 卡尔曼滤波之最优状态估计和最优状态估计算法
    1.最优状态估计情景1:假设一个一个比赛中,不同队伍的自动驾驶汽车使用GPS定位,在100种不同的地形上各行驶1公里。每次都尽可能停在终点。然后计算每只队伍的平均最终......
  • 【信号去噪】基于变分贝叶斯卡尔曼滤波器实现信号滤波附matlab代码
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进。......
  • 卡尔曼滤波(Kalman filter)(不完全介绍)
    来自  https://www.cnblogs.com/litecdows/p/KalmanFilter.html  1.Kalmanfilter基本介绍卡尔曼滤波(Kalmanfilter)是一种高效的自回归滤波器,它能在存在诸多不确......
  • 卡尔曼滤波
    1.为什么使用KalmanFilters?1.1什么是KalmanFilters?KalmanFilters是一种优化估计算法。下面使用使用两个例子说明KalmanFilters的用处。例子1:用来说明:在系......
  • 什么是“卡尔曼滤波器”?
     卡尔曼滤波器(KalmanFilter )是一个高效的递归滤波器,它可以实现从一系列的噪声测量中,估计动态系统的状态。起源于RudolfEmilKalman在1960年的博士论文和发表......
  • 拓端tecdat|R语言代写卡尔曼滤波器: KFAS建模时间序列
    时间序列预测,ARIMA等传统模型通常是一种流行的选择。虽然这些模型可以证明具有高度的准确性,但它们有一个主要缺点-它们通常不会解释“冲击”或时间序列的突然变化。让我们......
  • slam14(2-2) 高斯分布 协方差
     1.数学期望:在概率论和统计学中,数学期望(mean)(或均值,也简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一,它反映随机变量平均取值的大小。需要......
  • 从贝叶斯定理到卡尔曼滤波
    从贝叶斯定理到卡尔曼滤波可以选择直接跳至卡尔曼滤波部分开始之前一个问题引入:如何确定一个随机事件发生的概率频率学派认为可以利用大数定理,重复进行无数次随机试......
  • 卡尔曼滤波 学习记录
    1. 卡尔曼滤波的5个公式         F: 状态转移矩阵  P: 状态协方差矩阵 Q:  状态转移协方差矩阵   H: 观测矩阵 R: ......
  • 卡尔曼滤波器
      卡尔曼滤波器是一种运用于整合数据的一种算法,它可以将预测与观测的的数据进行处理,在这些充满不确定性的数据中找到一个较确定的平衡。这种程序能广泛应用于定位和导......