- 应用实例
有7个村庄(A, B, C, D, E, F, G) ,现在有六个邮差,从G点出发,需要分别把邮件分别送到 A, B, C , D, E, F 六个村庄
各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
如何计算出G村庄到 其它各个村庄的最短距离?
如果从其它点出发到各个点的最短距离又是多少?
- 简介
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止
- 具体步骤
设置出发顶点为v,顶点集合V{v1,v2,vi...},v到V中各顶点的距离构成距离集合Dis,Dis{d1,d2,di...},Dis集合记录着v到图中各顶点的距离
(到自身可以看作0,v到vi距离对应为di)
从Dis中选择值最小的di并移出Dis集合,同时移出V集合中对应的顶点vi,此时的v到vi即为最短路径
更新Dis集合,更新规则为:比较v到V集合中顶点的距离值,与v通过vi到V集合中顶点的距离值,保留值较小的一个(同时也应该更新顶点的前驱节点为vi,
表明是通过vi到达的)
重复执行两步骤,直到最短路径顶点为目标顶点即可结束
- 思路分析
# 第1次访问
already_arr中 [6]表示G点,当访问1次后,从0变成1
dis表示开始点到其他顶点的距离
pre_visited表示前驱顶点,[0]表示A点,查看第7行,GA的前驱顶点就是G点,也就是[6],GG的前驱顶点还是[6]
# 第2次访问,从A点开始,依次类推
- 代码实现
public class DijkstraAlgorithm {
public static void main(String[] args) {
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
//邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;// 表示不可以连接
matrix[0]=new int[]{N,5,7,N,N,N,2};
matrix[1]=new int[]{5,N,N,9,N,N,3};
matrix[2]=new int[]{7,N,N,N,8,N,N};
matrix[3]=new int[]{N,9,N,N,N,4,N};
matrix[4]=new int[]{N,N,8,N,N,5,4};
matrix[5]=new int[]{N,N,N,4,5,N,6};
matrix[6]=new int[]{2,3,N,N,4,6,N};
//创建 Graph对象
Graph graph = new Graph(vertex, matrix);
//测试, 看看图的邻接矩阵是否ok
graph.showGraph();
//测试迪杰斯特拉算法
graph.dsj(2);//C
graph.showDijkstra();
}
}
class Graph {
private char[] vertex; // 顶点数组
private int[][] matrix; // 邻接矩阵
private VisitedVertex vv; //已经访问的顶点的集合
// 构造器
public Graph(char[] vertex, int[][] matrix) {
this.vertex = vertex;
this.matrix = matrix;
}
//显示结果
public void showDijkstra() {
vv.show();
}
// 显示图
public void showGraph() {
for (int[] link : matrix) {
System.out.println(Arrays.toString(link));
}
}
//迪杰斯特拉算法实现
/**
* @param index 表示出发顶点对应的下标
*/
public void dsj(int index) {
vv = new VisitedVertex(vertex.length, index);
update(index);//更新index顶点到周围顶点的距离和前驱顶点
for(int j = 1; j <vertex.length; j++) {
index = vv.updateArr();// 选择并返回新的访问顶点
update(index); // 更新index顶点到周围顶点的距离和前驱顶点
}
}
//更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点,
private void update(int index) {
int len = 0;
//根据遍历我们的邻接矩阵的 matrix[index]行
for(int j = 0; j < matrix[index].length; j++) {
// len 含义是 : 出发顶点到index顶点的距离 + 从index顶点到j顶点的距离的和
len = vv.getDis(index) + matrix[index][j];
// 如果j顶点没有被访问过,并且 len 小于出发顶点到j顶点的距离,就需要更新
if(!vv.in(j) && len < vv.getDis(j)) {
vv.updatePre(j, index); //更新j顶点的前驱为index顶点
vv.updateDis(j, len); //更新出发顶点到j顶点的距离
}
}
}
}
// 已访问顶点集合
class VisitedVertex {
// 记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新
public int[] already_arr;
// 每个下标对应的值为前一个顶点下标, 会动态更新
public int[] pre_visited;
// 记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dis
public int[] dis;
//构造器
/**
* @param length :表示顶点的个数
* @param index: 出发顶点对应的下标, 比如G顶点,下标就是6
*/
public VisitedVertex(int length, int index) {
this.already_arr = new int[length];
this.pre_visited = new int[length];
this.dis = new int[length];
//初始化 dis数组
Arrays.fill(dis, 65535);
this.already_arr[index] = 1; //设置出发顶点被访问过
this.dis[index] = 0;//设置出发顶点的访问距离为0
}
/**
* 功能: 判断index顶点是否被访问过
* @param index
* @return 如果访问过,就返回true, 否则访问false
*/
public boolean in(int index) {
return already_arr[index] == 1;
}
/**
* 功能: 更新出发顶点到index顶点的距离
* @param index
* @param len
*/
public void updateDis(int index, int len) {
dis[index] = len;
}
/**
* 功能: 更新pre这个顶点的前驱顶点为index顶点
* @param pre
* @param index
*/
public void updatePre(int pre, int index) {
pre_visited[pre] = index;
}
/**
* 功能:返回出发顶点到index顶点的距离
* @param index
*/
public int getDis(int index) {
return dis[index];
}
/**
* 继续选择并返回新的访问顶点, 比如这里的G 完后,就是 A点作为新的访问顶点(注意不是出发顶点)
* @return
*/
public int updateArr() {
int min = 65535, index = 0;
for(int i = 0; i < already_arr.length; i++) {
if(already_arr[i] == 0 && dis[i] < min ) {
min = dis[i];
index = i;
}
}
//更新 index 顶点被访问过
already_arr[index] = 1;
return index;
}
//显示最后的结果
//即将三个数组的情况输出
public void show() {
System.out.println("==========================");
//输出already_arr
for(int i : already_arr) {
System.out.print(i + " ");
}
System.out.println();
//输出pre_visited
for(int i : pre_visited) {
System.out.print(i + " ");
}
System.out.println();
//输出dis
for(int i : dis) {
System.out.print(i + " ");
}
System.out.println();
//为了好看最后的最短距离,我们处理
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
int count = 0;
for (int i : dis) {
if (i != 65535) {
System.out.print(vertex[count] + "("+i+") ");
} else {
System.out.println("N ");
}
count++;
}
System.out.println();
}
}