首页 > 编程语言 >普里姆算法

普里姆算法

时间:2022-10-01 10:34:31浏览次数:54  
标签:10000 weight int graph verxs 算法 顶点 普里

  • 应用场景
现有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?

普里姆算法_最小生成树

  • 最小生成树
修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。
给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
N个顶点,一定有N-1条边
包含全部顶点
N-1条边都在图中
求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法

普里姆算法_结点_02

  • 简介
普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图

设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合

若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1

若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1

重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
  • 思路分析
  • 普里姆算法_数据结构与算法_03

  • 代码实现
public class PrimAlgorithm {

public static void main(String[] args) {
//测试看看图是否创建ok
char[] data = new char[]{'A','B','C','D','E','F','G'};
int verxs = data.length;
//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
int [][]weight=new int[][]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000},};
//创建MGraph对象
MGraph graph = new MGraph(verxs);
//创建一个MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
//输出
minTree.showGraph(graph);
//测试普利姆算法
minTree.prim(graph, 1);//
}

}

//创建最小生成树->村庄的图
class MinTree {
//创建图的邻接矩阵
/**
* @param graph 图对象
* @param verxs 图对应的顶点个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
int i, j;
for(i = 0; i < verxs; i++) {//顶点
graph.data[i] = data[i];
for(j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}

//显示图的邻接矩阵
public void showGraph(MGraph graph) {
for(int[] link: graph.weight) {
System.out.println(Arrays.toString(link));
}
}

//编写prim算法,得到最小生成树
/**
* @param graph 图
* @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1...
*/
public void prim(MGraph graph, int v) {
//visited[] 标记结点(顶点)是否被访问过
int visited[] = new int[graph.verxs];
//visited[] 默认元素的值都是0, 表示没有访问过
// for(int i =0; i <graph.verxs; i++) {
// visited[i] = 0;
// }
//把当前这个结点标记为已访问
visited[v] = 1;
//h1 和 h2 记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
for(int k = 1; k < graph.verxs; k++) {//因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边
//这个是确定每一次生成的子图 ,和哪个结点的距离最近
for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点
if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
//替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
//找到一条边是最小
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
//将当前这个结点标记为已经访问
visited[h2] = 1;
//minWeight 重新设置为最大值 10000
minWeight = 10000;
}
}
}

class MGraph {
int verxs; //表示图的节点个数
char[] data;//存放结点数据
int[][] weight; //存放边,就是我们的邻接矩阵

public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}



标签:10000,weight,int,graph,verxs,算法,顶点,普里
From: https://blog.51cto.com/chniny/5728144

相关文章

  • 贪心算法
    应用实例假设存在如下表的需要付费的广播台,以及广播台信号可以覆盖的地区。如何选择最少的广播台,让所有的地区都可以接收到信号思路分析目前并没有算法可以快速计算得到准......
  • 暴力匹配算法、KMP算法
    应用实例暴力匹配算法代码实现publicclassViolenceMatch{publicstaticvoidmain(String[]args){//测试暴力匹配算法Stringstr1="硅硅谷尚硅谷你尚硅......
  • 动态规划算法
    应用实例有一个背包,容量为4磅,现在将如下商品装入背包,要求装入的背包的总价值最大,并且重量不超出,且物品不能重复#当前为01背包#如果为完全背包则放入物品可重复简介思路分......
  • 非递归的方式实现二分查找算法
    简介二分查找法的运行时间为对数时间O(㏒₂n),即查找到需要的目标位置最多只需要㏒₂n步,假设从[0,99]的队列(100个数,即n=100)中寻到目标数30,则需要查找步数为㏒₂100,即最......
  • React面试:谈谈虚拟DOM,Diff算法与Key机制
    1.虚拟dom原生的JSDOM操作非常消耗性能,而React把真实原生JSDOM转换成了JavaScript对象。这就是虚拟Dom(VirtualDom)每次数据更新后,重新计算虚拟Dom,并和上一次生成的虚拟......
  • LeetCode 无重复字符的最长子串算法题解 All In One
    LeetCode无重复字符的最长子串算法题解AllInOnejs/ts实现无重复字符的最长子串无重复字符的最长子串原理图解滑动窗口"usestrict";/****@authorx......
  • Python基本算法实现及总结归纳
    @目录冒泡排序快速排序插入排序选择排序希尔排序归并排序各个算法的时间复杂度附:二分法冒泡排序这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端(......
  • 传统优化方法:枚举法、启发式算法和搜索算法
    1.枚举法枚举出可行解集合内的所有可行解,以求出精确最优解。对于连续函数,该方法要求先对其进行离散化处理,这样就可能因离散处理而永远达不到最优解。当枚举空间比较大时......
  • PTA 21级数据结构与算法实验5—树和二叉树
    目录7-1还原二叉树7-2朋友圈7-3修理牧场7-4玩转二叉树7-5根据后序和中序遍历输出先序遍历7-6完全二叉树的层序遍历7-7列出叶结点7-8部落7-9建立与遍历二叉树7-10......
  • 基于微粒群算法的0-1背包问题求解
    importrandomimportmathimportmatplotlib.pyplotaspltimportnumpyasnpimporttimedefinit(b_=700,xSize_=200,iteration_=1000,c1_=0.5,c2_=0.5,w_=0.8):......