- 2024-11-17联邦学习开山之作Communication-Efficient Learning of Deep Networks from Decentralized Data
1介绍1.1背景越来越多的手机和平板电脑成为许多人的主要计算设备。这些设备上强大的传感器(包括摄像头、麦克风和GPS),加上它们经常被携带的事实,意味着它们可以访问前所未有的大量数据,其中大部分本质上是私人的。根据这些数据学习的模型持有承诺通过支持更智能的应用程序来大大提
- 2024-11-15FlashOcc_ Fast and Memory-Efficient Occupancy Prediction via Channel-to-Height Plugin
FlashOcc:FastandMemory-EfficientOccupancyPredictionviaChannel-to-HeightPluginZoteroAbstractGiventhecapabilityofmitigatingthelong-taildeficienciesandintricate-shapedabsenceprevalentin3Dobjectdetection,occupancypredictionhasbec
- 2024-11-15UltimateDO_ An Efficient Framework to Marry Occupancy Prediction with 3D Object Detection via Cha
UltimateDO:AnEfficientFrameworktoMarryOccupancyPredictionwith3DObjectDetectionviaChannel2heightZoteroAbstractOccupancyand3Dobjectdetectionarecharacterizedastwostandardtasksinmodernautonomousdrivingsystem.Inordertodeploy
- 2024-10-26TRLO: An Efficient LiDAR Odometry with 3D Dynamic Object Tracking and Removal
arxiv|中科院联合国科大开源TRLO:一种结合3D动态物体跟踪与移除的高效LiDAR里程计【TRLO:AnEfficientLiDAROdometrywith3DDynamicObjectTrackingandRemoval】文章链接:[2410.13240]TRLO:AnEfficientLiDAROdometrywit...项目主页:GitHub-Yaepiii/TRLOTRLO:A
- 2024-10-19论文阅读:Vision Mamba- Efficient Visual Representation Learning with Bidirectional State Space Model
文章介绍本文由华中科技大学、地平线、智源人工智能研究院等机构合作;提出了一种带有双向Mamba块(Vim)的新通用视觉baseline,它用位置嵌入标记图像序列,并用双向状态空间模型压缩视觉表示。问题引入在处理图像和视频等视觉数据方面,基于纯SSM的通用baseline尚未得到探索;Visu
- 2024-10-11Communication-Efficient Learning of Deep Networks from Decentralized Data论文阅读和学习
联邦学习开山之作Communication-EfficientLearningofDeepNetworksfromDecentralizedDataabstractIntroductionTheFederatedAveragingAlgorithmExperimentalResultsConclusionsandFutureWorkCommunication-EfficientLearningofDeepNetworksfromDec
- 2024-10-09【自动驾驶】《VAD: Vectorized Scene Representation for Efficient Autonomous Driving》VAD论文阅读笔记
1.参考论文:https://arxiv.org/pdf/2303.12077代码:https://github.com/hustvl/VAD2.摘要 自动驾驶由于是一个对安全要求非常高的任务,所以需要全面了解周围的环境,来进行可靠的规划。以前的方法都是网格占用或者分割图等计算量较高的任务。 本
- 2024-09-28LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models
本文是LLM系列文章,针对《LogParser-LLM:AdvancingEfficientLogParsingwithLargeLanguageModels》的翻译。LogParser-LLM:利用大型语言模型推进高效日志解析摘要1引言2相关工作和动机3日志解析粒度4方法5实验6结论摘要日志是无处不在的数字足迹
- 2024-09-23DeiT:Data-efficient Image Transformer(2020)
Trainingdata-efficientimagetransformers&distillationthroughattention:通过注意力训练数据高效的图像转换器和蒸馏论文地址:https://arxiv.org/abs/2012.12877代码地址:https://github.com/facebookresearch/deit这篇论文在2020年12月23日首次提交,也就是在ViT提
- 2024-09-15Efficient DevSecOps Workflows with a Little Help from AI
EfficientDevSecOpsWorkflowswithaLittleHelpfromAIhttps://www.infoq.com/articles/efficient-devsecops-workflows/AIisenhancingDevSecOpsworkflowsbystreamliningtasks,improvingsecurity,andoptimizingoperations.UtilizeAIforgeneratingco
- 2024-09-10Memory-Efficient Adaptive Optimization
目录概符号说明SM3区间的划分代码AnilR.,GuptaV.,KorenT.,SingerY.Memory-efficientadaptiveoptimization.NeurIPS,2019.概本文提出了一种memory-efficient的优化器:SM3.符号说明\(t=1,\ldots,T\),optimizationrounds;\(w_t\in\mathbb{R}^d\),par
- 2024-08-27DocKylin: A Large Multimodal Model for Visual Document Understanding with Efficient Visual Slimming
DocKylin:ALargeMultimodalModelforVisualDocumentUnderstandingwithEfficientVisualSlimmingarxiv:http://arxiv.org/abs/2406.19101视觉处理器+LLM:视觉处理器:SwinTransformer创新点:通过:1、去除图片冗余像素;2、去除冗余token。来减小模型中的视觉处理器的参数量
- 2024-08-27GaLore Memory-Efficient LLM Training by Gradient Low-Rank Projection
目录概符号说明GaLoreZhaoJ.,ZhangZ.,ChenB.,WangZ.,AnandkumarA.andTianY.GaLore:Memory-efficientllmtrainingbygradientlow-rankprojection.ICML,2024.概本文提出了一种优化器中高效的缓存策略.符号说明\(W_t\in\mathbb{R}^{m\timesn}\),参
- 2024-08-27BAdam A Memory Efficient Full Parameter Optimization Method for Large Language Models
目录概BAdam代码LuoQ.,YuH.andLiX.BAdam:Amemoryefficientfullparameteroptimizationmethodforlargelanguagemodels.arXivpreprint,2024.概本文介绍了一种Blockcorrdinatedescent(BCD)的训练方式.BAdam当模型本身很大的时候,训练它会成为一
- 2024-08-19ControlNeXt: Powerful and Efficient Control for Image and Video Generation(2024,8)
ControlNeXt:PowerfulandEfficientControlforImageandVideoGeneration(2024,8)paperGithub进一步在ControlNet上进行了改进,主要针对一下两点对于每一个模块添加一个Zero-Conv也会占用很多显存.Zero-Conv两个模态的输出的mean、var具有差异,导致收敛很慢.针对1,
- 2024-08-16Efficient DETR:别再随机初始化了,旷视提出单解码层的高效DETR | CVPR 2021
EfficientDETR结合密集检测和稀疏集合检测的优点,利用密集先验来初始化对象容器,弥补单层解码器结构与6层解码器结构的差距。在MSCOCO上进行的实验表明,仅3个编码器层和1个解码器层即可实现与最先进的目标检测方法竞争的性能,在CrowdHuman密集数据集上的性能也远远优于其它检
- 2024-08-14ADALORA: ADAPTIVE BUDGET ALLOCATION FOR PARAMETER-EFFICIENT FINE-TUNING 笔记
ADALORA的前世今生
- 2024-07-18论文《AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning》浅析
在大模型微调的理论中,AdaLoRA方法是一个绕不开的部分。 这篇论文主要提出了一种新的自适应预算分配方法AdaLoRA,用于提高参数高效的微调性能。AdaLoRA方法有效地解决了现有参数高效微调方法在预算分配上的不足,提高了在资源有限情况下的模型性能,为NLP领域的实际应用提供了新的
- 2024-07-05C++ 空间和时间高效的二项式系数(Space and time efficient Binomial Coefficient)
这里函数采用两个参数n和k,并返回二项式系数C(n,k)的值。 例子: 输入:n=4和k=2输出:6解释:4C2等于4!/(2!*2!)=6输入:n=5和k=2输出:10解释:5C2等于5!/(3!*2!)=10 在本文中,我们讨论了O(n*k)时间和O(k)额外空间算法。C(n,
- 2024-06-17LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等]
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefixtuing等]由于LLM参数量都是在亿级以上,少则数十亿,多则数千亿。当我们想在用特定领域的数据微调模型时,如果想要full-tuning所有模型参数,看着是不太实际,一来需要相当多的硬件设备(GPU),二来需要
- 2024-06-04Efficient Pruning of Large Language Model with Adaptive Estimation Fusion
本文是LLM系列文章,针对《EfficientPruningofLargeLanguageModelwithAdaptiveEstimationFusion》的翻译。基于自适应估计融合的大型语言模型的高效修剪摘要1引言2相关工作3方法4实验5结论摘要大型语言模型(LLM)已经成为许多生成下游任务的关键,这
- 2024-06-03yolov8改进之嵌入Gold层
#加载模型model=YOLO("yolov8n.yaml") #从头开始构建新模型model=YOLO("yolov8n.pt") #加载预训练模型(建议用于训练)#使用模型model.train(data="coco128.yaml",epochs=3) #训练模型metrics=model.val() #在验证集上评估模型性能results=model
- 2024-06-02Unlearn What You Want to Forget Efficient Unlearning for LLMs
目录概符号说明UnlearningLayersFusingUnlearningLayers代码ChenJ.andYangD.Unlearnwhatyouwanttoforget:efficientunlearningforllms.2024.概本文提出一种Unlearninglayer去帮助LLMs'遗忘'一些数据.符号说明\(F(\cdot)\),largelanguagemodel
- 2024-05-31[论文阅读] Aligner@ Achieving Efficient Alignment through Weak-to-Strong Correction
Pretitle:Aligner:AchievingEfficientAlignmentthroughWeak-to-StrongCorrectionsource:Arxiv2024paper:https://arxiv.org/abs/2402.02416code:https://aligner2024.github.io/ref:https://mp.weixin.qq.com/s/O9PP4Oc_Ee3R_HxKyd31Qg关键词:LLM,align,fin
- 2024-05-29[Paper Reading] FlashOcc: Fast and Memory-Efficient Occupancy Prediction via Channel-to-Height Plugi
FlashOcc:FastandMemory-EfficientOccupancyPredictionviaChannel-to-HeightPluginlink时间:23.11机构:houmo.ai后摩智能TL;DR当时比较流行的OCC方案内存与计算复杂度较高,本文提出一种称为FlashOcc的方法,仅使用2D卷积将特征由二维空间lift到3D空间。MethodImageEn