• 2024-10-22线性代数--线性方程组
    线性方程组有解的判定{x1+x2+x3=1x1−x2−x3=−32x1+9x2+10x3=11系数矩阵:A=(1111−1−12910)增广矩阵:A¯=(11111−1−1−3291011)n是未知量的个数,m是方程的个数怎么判断秩是否相等步骤:通过方程,写出增广系数矩阵只做初等行变换,化为阶梯型看系数矩阵的秩和增广系数矩阵的秩
  • 2024-09-08线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解
    线性方程组文章目录线性方程组1.齐次线性方程组的求解1.1核心要义1.2基础解系与线性无关的解向量的个数1.3计算使用举例2.非齐次线性方程的求解2.1非齐次线性方程解的判定2.2非齐次线性方程解的结构2.3计算使用举例3.公共解与同解3.1两个方程组的公共解3.2同
  • 2024-07-19向量组的极大无关组与齐次方程组的基础解系
    7.18向量组的极大无关组660:311~317求极大无关组方法:将向量排列成矩阵初等行变换成行阶梯型等层梯子选一列,即为极大线性无关组其余向量用极大无关组表示:将向量组化为单位向量组的形式。  例: 基础解系  求齐次方程组通解系数矩阵A→行最简(只能行变换)写同解
  • 2024-06-13第4章 线性方程组
    本笔记是对李永乐《线性代数辅导讲义》中各章节涉及的基础知识进行整理。本笔记主要用以应对夏令营面试中可能会问到的线性代数方面的问题,比较泛泛而谈,如果您对这些内容感兴趣,建议参考原书。大佬可自行绕路更多章节内容参见:保研复习——线性代数篇-CSDN博客目录思维导图一