首页 > 其他分享 >Quantum computing for the very curious——Part I: The state of a qubit

Quantum computing for the very curious——Part I: The state of a qubit

时间:2025-01-20 16:11:55浏览次数:1  
标签:vert computing very state vector bmatrix quantum rangle

NOTE

Quantum computing for the very curious

Preface

qubit is short of the quantum bit, whereas the state of a bit is a number (0 or 1),the state of a qubit is a vector in a two-dimensional vector space

Maybe the state of the qubit is being stored somehow on an electron, or a photon, or an atom

Property

There are four properties we should take away:

  1. qubits have a state;
  2. much like a bit, that state is an abstract mathematical object;
  3. whereas a bit's abstract state is a number, 0 or 1, the state of a qubit is a 2-dimensional vector
  4. we call the 2-dimensional vector space where states live state space.

Connecting qubits to bits: the computational basis states

there are two special quantum states which correspond to the 0 and 1 states of a classical bit.

The quantum state corresponding to 0 is usually denoted \(\vert 0 \rangle\) and corresponding to 1 is denoted \(\vert 1 \rangle\)

the fancy notations are the following vector respectively

\[\vert 0\rangle:=\begin{bmatrix}1\\0\end{bmatrix} , \vert 1 \rangle:=\begin{bmatrix}0\\1\end{bmatrix} \]

(this notation with\(\vert\) and \(\rangle\) is called the ket notation——a ket is just a vector)

the special state \(\vert 0 \rangle\) and $\vert 1 \rangle $ ,called the computational basis state,have all the properties we expect of the state of a classical bit

General states of a qubit

with the computational basis states \(\vert1\rangle\) and \(\vert 0 \rangle\),many more states are possible.

In general,a quantum state is a two-dimensional vector.

  • an example:

    then we can calculate:

    \[0.6\vert 0\rangle +0.8\vert 1\rangle =0.6 \begin{bmatrix}1\\0\end{bmatrix}+0.8\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}0.6\\0.8\end{bmatrix} \]

furthermore quantum states are also the complex vectors.

they can have complex numbers as entries.

  • an instance:

    \[\frac{i+1}{2}\vert 0 \rangle + \frac{i}{\sqrt{2}}\vert 1\rangle=\begin{bmatrix} \frac{i+1}{2} \\ \frac{i}{\sqrt{2}} \end{bmatrix} \]

a quantum state is a two-dimensional vector in a complex vector space.

To understand it,we need to get familiar with some more nomenclature commonly used for quantum states

  1. superposition
    people often say a state like $0.6\vert 0\rangle +0.8\vert 1\rangle $ is a superposition of \(\vert 0 \rangle\) and \(\vert 1 \rangle\)(All they mean is that the state is a linear combination of \(\vert 0 \rangle\) and \(\vert 1 \rangle\) )

  2. amplitude
    An amplitude is the coefficient for a particular state in superposition.
    for instance,in the state $0.6\vert 0\rangle +0.8\vert 1\rangle $ the amplitude for $\vert 0\rangle $ is 0.6 and the amplitude for \(\vert 1 \rangle\) is 0.8

  3. normalization
    a quantum state is a two-dimensional complex vector but there is a constraint :
    the sums of the squares of the amplitudes must be equal to 1.
    for a more general quantum state,the amplitudes can be complex numbers,we denote them by \(\alpha\) and \(\beta\).
    the state is \(\alpha\vert 0 \rangle+\beta\vert 1 \rangle\).Obviously,\(|\alpha|^2+|\beta|^2=1\)
    this is called the normalization constraint
    for example:
    for the state 0.6\(\vert 0 \rangle+0.8\vert 1 \rangle\) the sum of the squares of the amplitudes is \(0.6^2+0.8^2\),which is equal to 1

    we consider \(\vert1\rangle\) and \(\vert 0 \rangle\) as orthonormal vectors.

SUMMARY:

the quantum state of a qubit is a vector of unit length in a two-dimensional complex vector space known as state space.

we’re taking is to start with the mathematics of quantum computing --we’ll keep getting familiar with qubits and the quantum state, and developing the consequences. Doing that is how we’ll build up intuition, and will give us the chops needed to come back and think harder about the meaning of the quantum state.

标签:vert,computing,very,state,vector,bmatrix,quantum,rangle
From: https://www.cnblogs.com/guiyou/p/18671348

相关文章

  • 1.19 CW 模拟赛 T2. Everybody Lost Somebody
    前言心态不好,多想想那我是不是要去学后缀数组?好的跑去学了一下()思路首先考虑\(\textrm{sa,height}\)数组的约束在此之前先给出一些定义\(\textrm{sa}\)数组存储排名为\(i\)的后缀在原序列上的位置\(\textrm{rank}\)数组存储原序列上的位置对应的排名\(\textr......
  • 少一点If/Else - 状态模式(State Pattern)
    状态模式(StatePattern)状态模式(StatePattern)状态模式(StatePattern)概述状态模式(StatePattern)结构图状态模式(StatePattern)涉及的角色talkischeap,showyoumycode总结状态模式(StatePattern)状态模式(StatePattern)是一种行为型设计模式,它允许对象在其内部状态......
  • SolidState通关手册---靶机练习
    SolidState靶机训练声明B站UP主泷羽sec笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负。✍......
  • (翻译) 关于游戏网络,每个游戏程序需知 What Every Programmer Needs To Know About
    原文链接 https://gafferongames.com/post/what_every_programmer_needs_to_know_about_game_networking/ Haveyoueverwonderedhowmultiplayergameswork?Fromtheoutsideitseemsmagical:twoormoreplayerssharingaconsistentexperience(一致的体验)across......
  • Explaining Graph Neural Networks for Vulnerability Discovery
    本篇论文题目为:ExplainingGraphNeuralNetworksforVulnerabilityDiscovery发表于CCS2021本文主要内容是介绍GNNs->前人对GNNs的应用与改进->提出一种对GNNs的评估解释本文并未实际构建一种方法去进行漏洞挖掘,而侧重于对GNNs在漏洞挖掘中的应用针对应用文献进行梳理:......
  • NFCAdapter.stopDiscovery
    NFCAdapter.stopDiscovery(Objectobject)基础库2.11.2开始支持,低版本需做兼容处理。以Promise风格调用:不支持小程序插件:支持微信iOS版:不支持微信Android版:支持相关文档:近场通信(NFC)功能描述参数Objectobject属性类型默认值必填说明suc......
  • NFCAdapter.startDiscovery
    NFCAdapter.startDiscovery(Objectobject)基础库2.11.2开始支持,低版本需做兼容处理。以Promise风格调用:不支持小程序插件:支持微信iOS版:不支持微信Android版:支持相关文档:近场通信(NFC)功能描述参数Objectobject属性类型默认值必填说明su......
  • CDS标准视图:银行对账单行项目 I_BankStatementItem
    视图名称:银行对账单行项目I_BankStatementItem视图类型:基础视图视图代码:点击查看代码@AbapCatalog.sqlViewName:'IBANKSTATMENTITM'@AbapCatalog.compiler.compareFilter:true@AbapCatalog.preserveKey:true@AccessControl.authorizationCheck:#CHECK@EndUserText.l......
  • CDS标准视图:银行对账单抬头 I_BankStatement
    视图名称:银行对账单抬头I_BankStatement视图类型:基础视图代码:点击查看代码事务代码:FF67/视图结构:字段名称技术名称短代码BANKSTATEMENTSHORTID公司代码COMPANYCODE开户行HOUSEBANK开户行账户标识HOUSEBANKACCOUNT银行对账单编号BANKSTATEMEN......
  • theft和thievery的区别
    这两个词在表示抽象概念“盗窃行为、盗窃罪”时没有区别。The theftofthejewelryandothervaluableswasimmediatelyreportedtothepolice.(对珠宝和其他贵重物品的盗窃会被立即报告给警察)Hewasfoundguiltyof thievery(他犯盗窃罪被发现了)但是,theft只能表示盗窃行......